Loss of the multifunctional RNA-binding protein RBM47 as a source of selectable metastatic traits in breast cancer

  1. Sakari Vanharanta
  2. Christina B Marney
  3. Weiping Shu
  4. Manuel Valiente
  5. Yilong Zou
  6. Aldo Mele
  7. Robert B Darnell
  8. Joan Massagué  Is a corresponding author
  1. Memorial Sloan-Kettering Cancer Center, United States
  2. The Rockefeller University, United States

Abstract

The mechanisms through which cancer cells lock in altered transcriptional programs in support of metastasis remain largely unknown. Through integrative analysis of clinical breast cancer gene expression datasets, cell line models of breast cancer progression, and mutation data from cancer genome resequencing studies, we identified RNA binding motif protein 47 (RBM47) as a suppressor of breast cancer progression and metastasis. RBM47 inhibited breast cancer re-initiation and growth in experimental models. Transcriptome-wide HITS-CLIP analysis revealed widespread RBM47 binding to mRNAs, most prominently in introns and 3'UTRs. RBM47 altered splicing and abundance of a subset of its target mRNAs. Some of the mRNAs stabilized by RBM47, as exemplified by dickkopf WNT signaling pathway inhibitor 1, inhibit tumor progression downstream of RBM47. Our work identifies RBM47 as an RNA-binding protein that can suppress breast cancer progression and demonstrates how the inactivation of a broadly targeted RNA chaperone enables selection of a pro-metastatic state.

Article and author information

Author details

  1. Sakari Vanharanta

    Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  2. Christina B Marney

    The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  3. Weiping Shu

    Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  4. Manuel Valiente

    Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  5. Yilong Zou

    Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  6. Aldo Mele

    The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  7. Robert B Darnell

    The Rockefeller University, New York, United States
    Competing interests
    Robert B Darnell, Reviewing editor, eLife.
  8. Joan Massagué

    Memorial Sloan-Kettering Cancer Center, New York, United States
    For correspondence
    j-massague@ski.mskcc.org
    Competing interests
    Joan Massagué, Reviewing editor, eLife.

Reviewing Editor

  1. Roy Parker, University of Colorado, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#99-09-032) of Memorial Sloan Kettering Cancer Center. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: March 7, 2014
  2. Accepted: May 31, 2014
  3. Accepted Manuscript published: June 4, 2014 (version 1)
  4. Version of Record published: July 1, 2014 (version 2)

Copyright

© 2014, Vanharanta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,449
    views
  • 670
    downloads
  • 100
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sakari Vanharanta
  2. Christina B Marney
  3. Weiping Shu
  4. Manuel Valiente
  5. Yilong Zou
  6. Aldo Mele
  7. Robert B Darnell
  8. Joan Massagué
(2014)
Loss of the multifunctional RNA-binding protein RBM47 as a source of selectable metastatic traits in breast cancer
eLife 3:e02734.
https://doi.org/10.7554/eLife.02734

Share this article

https://doi.org/10.7554/eLife.02734

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.