Active invasion of bacteria into living fungal cells

  1. Nadine Moebius
  2. Zerrin Üzüm
  3. Jan Dijksterhuis
  4. Gerald Lackner
  5. Christian Hertweck  Is a corresponding author
  1. Leibniz Institute for Natural Product Research and Infection Biology, Germany
  2. Applied and Industrial Mycology, CBS, Netherlands

Abstract

The rice seedling blight fungus Rhizopus microsporus and its endosymbiont Burkholderia rhizoxinica form an unusual, highly specific alliance to produce the highly potent antimitotic phytotoxin rhizoxin. Yet, it has remained a riddle how bacteria invade into the fungal cells. Genome mining for potential symbiosis factors and functional analyses revealed that a type 2 secretion system (T2SS) of the bacterial endosymbiont is required for the formation of the endosymbiosis. Comparative proteome analyses show that the T2SS releases chitinolytic enzymes (chitinase, chitosanase) and chitin-binding proteins. The genes responsible for chitinolytic proteins and T2SS components are highly expressed during infection. Through targeted gene knock-outs, sporulation assays and microscopic investigations we found that chitinase is essential for bacteria to enter hyphae. Unprecedented snapshots of the traceless bacterial intrusion were obtained using cryo-electron microscopy. Beyond unveiling the pivotal role of chitinolytic enzymes in the active invasion of a fungus by bacteria, these findings grant unprecedented insight into the fungal cell wall penetration and symbiosis formation.

Article and author information

Author details

  1. Nadine Moebius

    Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Zerrin Üzüm

    Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jan Dijksterhuis

    Applied and Industrial Mycology, CBS, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Gerald Lackner

    Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Christian Hertweck

    Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
    For correspondence
    christian.hertweck@hki-jena.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Thorsten Nürnberger, University of Tübingen, Germany

Version history

  1. Received: April 3, 2014
  2. Accepted: August 29, 2014
  3. Accepted Manuscript published: September 2, 2014 (version 1)
  4. Version of Record published: September 17, 2014 (version 2)

Copyright

© 2014, Moebius et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,054
    views
  • 833
    downloads
  • 101
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nadine Moebius
  2. Zerrin Üzüm
  3. Jan Dijksterhuis
  4. Gerald Lackner
  5. Christian Hertweck
(2014)
Active invasion of bacteria into living fungal cells
eLife 3:e03007.
https://doi.org/10.7554/eLife.03007

Share this article

https://doi.org/10.7554/eLife.03007

Further reading

  1. Bacteria and fungal cells join forces to cause rice seedling blight.

    1. Medicine
    2. Microbiology and Infectious Disease
    Yi-Shin Chang, Kai Huang ... David L Perkins
    Research Article

    Background:

    End-stage renal disease (ESRD) patients experience immune compromise characterized by complex alterations of both innate and adaptive immunity, and results in higher susceptibility to infection and lower response to vaccination. This immune compromise, coupled with greater risk of exposure to infectious disease at hemodialysis (HD) centers, underscores the need for examination of the immune response to the COVID-19 mRNA-based vaccines.

    Methods:

    The immune response to the COVID-19 BNT162b2 mRNA vaccine was assessed in 20 HD patients and cohort-matched controls. RNA sequencing of peripheral blood mononuclear cells was performed longitudinally before and after each vaccination dose for a total of six time points per subject. Anti-spike antibody levels were quantified prior to the first vaccination dose (V1D0) and 7 d after the second dose (V2D7) using anti-spike IgG titers and antibody neutralization assays. Anti-spike IgG titers were additionally quantified 6 mo after initial vaccination. Clinical history and lab values in HD patients were obtained to identify predictors of vaccination response.

    Results:

    Transcriptomic analyses demonstrated differing time courses of immune responses, with prolonged myeloid cell activity in HD at 1 wk after the first vaccination dose. HD also demonstrated decreased metabolic activity and decreased antigen presentation compared to controls after the second vaccination dose. Anti-spike IgG titers and neutralizing function were substantially elevated in both controls and HD at V2D7, with a small but significant reduction in titers in HD groups (p<0.05). Anti-spike IgG remained elevated above baseline at 6 mo in both subject groups. Anti-spike IgG titers at V2D7 were highly predictive of 6-month titer levels. Transcriptomic biomarkers after the second vaccination dose and clinical biomarkers including ferritin levels were found to be predictive of antibody development.

    Conclusions:

    Overall, we demonstrate differing time courses of immune responses to the BTN162b2 mRNA COVID-19 vaccination in maintenance HD subjects comparable to healthy controls and identify transcriptomic and clinical predictors of anti-spike IgG titers in HD. Analyzing vaccination as an in vivo perturbation, our results warrant further characterization of the immune dysregulation of ESRD.

    Funding:

    F30HD102093, F30HL151182, T32HL144909, R01HL138628. This research has been funded by the University of Illinois at Chicago Center for Clinical and Translational Science (CCTS) award UL1TR002003.