Adult-born granule cells mature through two functionally distinct states

  1. János Brunner
  2. Máté Neubrandt
  3. Susan Van-Weert
  4. Tibor Andrási
  5. Felix B Kleine Borgmann
  6. Sebastian Jessberger
  7. János Szabadics  Is a corresponding author
  1. Institute of Experimental Medicine, Hungarian Academy of Sciences, Hungary
  2. University of Zurich, Switzerland

Abstract

Adult-born granule cells (ABGCs) are involved in certain forms of hippocampus-dependent learning and memory. It has been proposed that young but functionally integrated ABGCs (4-weeks-old) specifically contribute to pattern separation functions of the dentate gyrus due to their heightened excitability, whereas old ABGCs (>8-weeks-old) lose these capabilities. Measuring multiple cellular and integrative characteristics of 3-10 weeks old individual ABGCs, we show that ABGCs consist of two functionally distinguishable populations showing highly distinct input integration properties (one group being highly sensitive to narrow input intensity ranges while the other group linearly reports input strength) that are largely independent of the cellular age and maturation stage, suggesting that 'classmate' cells (born during the same period) can contribute to the network with fundamentally different functions. Thus, ABGCs provide two temporally overlapping but functionally distinct neuronal cell populations, adding a novel level of complexity to our understanding of how life-long neurogenesis contributes to adult brain function.

Article and author information

Author details

  1. János Brunner

    Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  2. Máté Neubrandt

    Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Susan Van-Weert

    Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Tibor Andrási

    Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  5. Felix B Kleine Borgmann

    University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Sebastian Jessberger

    University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. János Szabadics

    Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    For correspondence
    szabadics.janos@koki.mta.hu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Ethics

Animal experimentation: All experimental procedures were performed in accordance with the ethical guidelines of the Institute of Experimental Medicine Protection of Research Subjects Committee (permission: 22.1/1760/003/2009) and were approved by the local virus safety committee.

Version history

  1. Received: April 16, 2014
  2. Accepted: July 23, 2014
  3. Accepted Manuscript published: July 24, 2014 (version 1)
  4. Version of Record published: August 13, 2014 (version 2)

Copyright

© 2014, Brunner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,275
    views
  • 331
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. János Brunner
  2. Máté Neubrandt
  3. Susan Van-Weert
  4. Tibor Andrási
  5. Felix B Kleine Borgmann
  6. Sebastian Jessberger
  7. János Szabadics
(2014)
Adult-born granule cells mature through two functionally distinct states
eLife 3:e03104.
https://doi.org/10.7554/eLife.03104

Share this article

https://doi.org/10.7554/eLife.03104

Further reading

    1. Neuroscience
    Ivan Tomić, Paul M Bays
    Research Article

    Probing memory of a complex visual image within a few hundred milliseconds after its disappearance reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second. Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or ‘iconic’ memory (IM), while the latter relies on capacity-limited but comparatively stable visual working memory (VWM). While iconic decay and VWM capacity have been extensively studied independently, currently no single framework quantitatively accounts for the dynamics of memory fidelity over these time scales. Here, we extend a stationary neural population model of VWM with a temporal dimension, incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory, and a slower accumulation of internal error that causes memorized features to randomly drift over time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall by lifting the effective limit on VWM signal strength imposed when multiple items compete for representation, allowing memory for the cued item to be supplemented with information from the decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions while excluding alternative model architectures. A key conclusion is that differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a single resource-limited WM store.

    1. Neuroscience
    Emilio Salinas, Bashirul I Sheikh
    Insight

    Our ability to recall details from a remembered image depends on a single mechanism that is engaged from the very moment the image disappears from view.