The topography of frequency and time representation in primate auditory cortices

  1. Simon Baumann  Is a corresponding author
  2. Olivier Joly
  3. Adrian Rees
  4. Christopher I Petkov
  5. Li Sun
  6. Alexander Thiele
  7. Timothy D Griffiths
  1. Newcastle University, United Kingdom
  2. University of Oxford, United Kingdom

Abstract

Natural sounds can be characterised by their spectral content and temporal modulation, but how the brain is organized to analyse these two critical sound dimensions remains uncertain. Using functional magnetic resonance imaging, we demonstrate a topographical representation of amplitude modulation rate in the auditory cortex of awake macaques. The representation of this temporal dimension is organized in approximately concentric bands of equal rates across the superior temporal plane in both hemispheres, progressing from high rates in the posterior core to low rates in the anterior core and lateral belt cortex. In A1 the resulting gradient of modulation rate runs approximately perpendicular to the axis of the tonotopic gradient, suggesting an orthogonal organisation of spectral and temporal sound dimensions. In auditory belt areas this relationship is more complex. The data suggest a continuous representation of modulation rate across several physiological areas, in contradistinction to a separate representation of frequency within each area.

Article and author information

Author details

  1. Simon Baumann

    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
    For correspondence
    simon.baumann@ncl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Olivier Joly

    MRC Cognition and Brain Sciences Unit, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Adrian Rees

    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher I Petkov

    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Li Sun

    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexander Thiele

    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Timothy D Griffiths

    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Eve Marder, Brandeis University, United States

Ethics

Animal experimentation: All experiments were carried out in accordance with the UK, Animals (Scientific Procedures) Act (1986), European Communities Council Directive 1986 (86/609/EEC) and the US National Institutes of Health Guidelines for the Care and Use of Animals for Experimental Procedures, and were performed with great care to ensure the well-being of the animals.

Version history

  1. Received: May 4, 2014
  2. Accepted: January 14, 2015
  3. Accepted Manuscript published: January 15, 2015 (version 1)
  4. Version of Record published: April 16, 2015 (version 2)

Copyright

© 2015, Baumann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,549
    views
  • 347
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simon Baumann
  2. Olivier Joly
  3. Adrian Rees
  4. Christopher I Petkov
  5. Li Sun
  6. Alexander Thiele
  7. Timothy D Griffiths
(2015)
The topography of frequency and time representation in primate auditory cortices
eLife 4:e03256.
https://doi.org/10.7554/eLife.03256

Share this article

https://doi.org/10.7554/eLife.03256

Further reading

    1. Neuroscience
    Mischa Vance Bandet, Ian Robert Winship
    Research Article

    Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within ‘remapped’ forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.

    1. Neuroscience
    Renbo Mao, Jianjun Yu ... Yi Rao
    Tools and Resources

    Dissection of neural circuitry underlying behaviors is a central theme in neurobiology. We have previously proposed the concept of chemoconnectome (CCT) to cover the entire chemical transmission between neurons and target cells in an organism and created tools for studying it (CCTomics) by targeting all genes related to the CCT in Drosophila. Here we have created lines targeting the CCT in a conditional manner after modifying GFP RNA interference, Flp-out, and CRISPR/Cas9 technologies. All three strategies have been validated to be highly effective, with the best using chromatin-peptide fused Cas9 variants and scaffold optimized sgRNAs. As a proof of principle, we conducted a comprehensive intersection analysis of CCT genes expression profiles in the clock neurons, uncovering 43 CCT genes present in clock neurons. Specific elimination of each from clock neurons revealed that loss of the neuropeptide CNMa in two posterior dorsal clock neurons (DN1ps) or its receptor (CNMaR) caused advanced morning activity, indicating a suppressive role of CNMa-CNMaR on morning anticipation, opposite to the promoting role of PDF-PDFR on morning anticipation. These results demonstrate the effectiveness of conditional CCTomics and its tools created here and establish an antagonistic relationship between CNMa-CNMaR and PDF-PDFR signaling in regulating morning anticipation.