Abstract

In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change.

Article and author information

Author details

  1. Tania Nguyen

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Harry Fischl

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Françoise S Howe

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Ronja Woloszczuk

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Ana Serra Barros

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Zhenyu Xu

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  7. David Brown

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  8. Struan C Murray

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Simon Haenni

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  10. James M Halstead

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  11. Leigh O'Connor

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  12. Gergana Shipkovenska

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  13. Lars M Steinmeetz

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  14. Jane Mellor

    University of Oxford, Oxford, United Kingdom
    For correspondence
    jane.mellor@bioch.ox.ac.uk
    Competing interests
    Jane Mellor, I am an advisor to Oxford Biodynamics Ltd and Sibelius Ltd and sit on the board of Chronos Therapeutics. OBD provided funding for this work but like all the funders, had no say in the design or outcome of the research and do not benefit in any way from this research.

Reviewing Editor

  1. Joaquin M Espinosa, Howard Hughes Medical Institute, University of Colorado, United States

Version history

  1. Received: June 8, 2014
  2. Accepted: November 17, 2014
  3. Accepted Manuscript published: November 19, 2014 (version 1)
  4. Version of Record published: December 24, 2014 (version 2)

Copyright

© 2014, Nguyen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,973
    views
  • 398
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tania Nguyen
  2. Harry Fischl
  3. Françoise S Howe
  4. Ronja Woloszczuk
  5. Ana Serra Barros
  6. Zhenyu Xu
  7. David Brown
  8. Struan C Murray
  9. Simon Haenni
  10. James M Halstead
  11. Leigh O'Connor
  12. Gergana Shipkovenska
  13. Lars M Steinmeetz
  14. Jane Mellor
(2014)
Transcription mediated insulation and interference direct gene cluster expression switches
eLife 3:e03635.
https://doi.org/10.7554/eLife.03635

Share this article

https://doi.org/10.7554/eLife.03635

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Taegon Chung, Iksoo Chang, Sangyeol Kim
    Research Article

    Locomotion is a fundamental behavior of Caenorhabditis elegans (C. elegans). Previous works on kinetic simulations of animals helped researchers understand the physical mechanisms of locomotion and the muscle-controlling principles of neuronal circuits as an actuator part. It has yet to be understood how C. elegans utilizes the frictional forces caused by the tension of its muscles to perform sequenced locomotive behaviors. Here, we present a two-dimensional rigid body chain model for the locomotion of C. elegans by developing Newtonian equations of motion for each body segment of C. elegans. Having accounted for friction-coefficients of the surrounding environment, elastic constants of C. elegans, and its kymogram from experiments, our kinetic model (ElegansBot) reproduced various locomotion of C. elegans such as, but not limited to, forward-backward-(omega turn)-forward locomotion constituting escaping behavior and delta-turn navigation. Additionally, ElegansBot precisely quantified the forces acting on each body segment of C. elegans to allow investigation of the force distribution. This model will facilitate our understanding of the detailed mechanism of various locomotive behaviors at any given friction-coefficients of the surrounding environment. Furthermore, as the model ensures the performance of realistic behavior, it can be used to research actuator-controller interaction between muscles and neuronal circuits.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Lauren Kuffler, Daniel A Skelly ... Gregory W Carter
    Research Article

    Gene expression is known to be affected by interactions between local genetic variation and DNA accessibility, with the latter organized into three-dimensional chromatin structures. Analyses of these interactions have previously been limited, obscuring their regulatory context, and the extent to which they occur throughout the genome. Here, we undertake a genome-scale analysis of these interactions in a genetically diverse population to systematically identify global genetic–epigenetic interaction, and reveal constraints imposed by chromatin structure. We establish the extent and structure of genotype-by-epigenotype interaction using embryonic stem cells derived from Diversity Outbred mice. This mouse population segregates millions of variants from eight inbred founders, enabling precision genetic mapping with extensive genotypic and phenotypic diversity. With 176 samples profiled for genotype, gene expression, and open chromatin, we used regression modeling to infer genetic–epigenetic interactions on a genome-wide scale. Our results demonstrate that statistical interactions between genetic variants and chromatin accessibility are common throughout the genome. We found that these interactions occur within the local area of the affected gene, and that this locality corresponds to topologically associated domains (TADs). The likelihood of interaction was most strongly defined by the three-dimensional (3D) domain structure rather than linear DNA sequence. We show that stable 3D genome structure is an effective tool to guide searches for regulatory elements and, conversely, that regulatory elements in genetically diverse populations provide a means to infer 3D genome structure. We confirmed this finding with CTCF ChIP-seq that revealed strain-specific binding in the inbred founder mice. In stem cells, open chromatin participating in the most significant regression models demonstrated an enrichment for developmental genes and the TAD-forming CTCF-binding complex, providing an opportunity for statistical inference of shifting TAD boundaries operating during early development. These findings provide evidence that genetic and epigenetic factors operate within the context of 3D chromatin structure.