Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex

  1. Shannon N Nangle
  2. Clark Rosensweig
  3. Nobuya Koike
  4. Hajime Tei
  5. Joseph S Takahashi
  6. Carla B Green
  7. Ning Zheng  Is a corresponding author
  1. University of Washington, United States
  2. University of Texas, Southwestern Medical Center, United States
  3. Kyoto Prefectural University of Medicine, Japan
  4. Graduate School of Natural Science and Technology, Kanazawa University, Japan
  5. University of Texas Southwestern Medical Center, United States
  6. The University of Texas Southwestern Medical Center, United States

Abstract

The mammalian circadian clock is driven by a transcriptional-translational feedback loop, which produces robust 24-hr rhythms. Proper oscillation of the clock depends on the complex formation and periodic turnover of the Period and Cryptochrome proteins, which together inhibit their own transcriptional activator complex, CLOCK-BMAL1. We determined the crystal structure of the CRY-binding domain (CBD) of PER2 in complex with CRY2 at 2.8 Å resolution. PER2-CBD adopts a highly extended conformation, embracing CRY2 with a sinuous binding mode. Its N-terminal end tucks into CRY adjacent to a large pocket critical for CLOCK-BMAL1 binding, while its C-terminal half flanks the CRY2 C-terminal helix and sterically hinders the recognition of CRY2 by the FBXL3 ubiquitin ligase. Unexpectedly, a strictly conserved intermolecular zinc finger, whose integrity is important for clock rhythmicity, further stabilizes the complex. Our structure-guided analyses show that these interspersed CRY-interacting regions represent multiple functional modules of PERs at the CRY-binding interface.

Article and author information

Author details

  1. Shannon N Nangle

    University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Clark Rosensweig

    University of Texas, Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nobuya Koike

    Kyoto Prefectural University of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Hajime Tei

    Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Joseph S Takahashi

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Carla B Green

    The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ning Zheng

    University of Washington, Seattle, United States
    For correspondence
    nzheng@uw.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Louis Ptáček, University of California, San Francisco, United States

Version history

  1. Received: June 12, 2014
  2. Accepted: August 14, 2014
  3. Accepted Manuscript published: August 15, 2014 (version 1)
  4. Version of Record published: September 9, 2014 (version 2)

Copyright

© 2014, Nangle et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,244
    views
  • 531
    downloads
  • 89
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shannon N Nangle
  2. Clark Rosensweig
  3. Nobuya Koike
  4. Hajime Tei
  5. Joseph S Takahashi
  6. Carla B Green
  7. Ning Zheng
(2014)
Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex
eLife 3:e03674.
https://doi.org/10.7554/eLife.03674

Share this article

https://doi.org/10.7554/eLife.03674

Further reading

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.

    1. Structural Biology and Molecular Biophysics
    Christian Galicia, Giambattista Guaitoli ... Wim Versées
    Research Article

    Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson’s disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.