Selection of chromosomal DNA libraries using a multiplex CRISPR system

  1. Owen W Ryan
  2. Jeffrey M Skerker
  3. Matthew J Maurer
  4. Xin Li
  5. Jordan C Tsai
  6. Snigdha Poddar
  7. Michael E Lee
  8. Will DeLoache
  9. John E Dueber
  10. Adam P Arkin
  11. Jamie H D Cate  Is a corresponding author
  1. BP Biofuels Global Technology Center, United States
  2. Energy Biosciences Institute, University of California, Berkeley, United States

Abstract

The directed evolution of biomolecules to improve or change their activity is central to many engineering and synthetic biology efforts. However, selecting improved variants from gene libraries in living cells requires plasmid expression systems that suffer from variable copy number effects, or the use of complex marker-dependent chromosomal integration strategies. We developed quantitative gene assembly and DNA library insertion into the Saccharomyces cerevisiae genome by optimizing an efficient single-step and marker-free genome editing system using CRISPR-Cas9. With this Multiplex CRISPR (CRISPRm) system, we selected an improved cellobiose utilization pathway in diploid yeast in a single round of mutagenesis and selection, which increased cellobiose fermentation rates by over ten-fold. Mutations recovered in the best cellodextrin transporters reveal synergy between substrate binding and transporter dynamics, and demonstrate the power of CRISPRm to accelerate selection experiments and discoveries of the molecular determinants that enhance biomolecule function.

Article and author information

Author details

  1. Owen W Ryan

    BP Biofuels Global Technology Center, San Diego, United States
    Competing interests
    Owen W Ryan, A patent application related to this work has been filed by J. Cate and O. Ryan on behalf of the Regents of the University of California.
  2. Jeffrey M Skerker

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Matthew J Maurer

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Xin Li

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Jordan C Tsai

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Snigdha Poddar

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Michael E Lee

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Will DeLoache

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  9. John E Dueber

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  10. Adam P Arkin

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  11. Jamie H D Cate

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    jcate@lbl.gov
    Competing interests
    Jamie H D Cate, A patent application related to this work has been filed by J. Cate and O. Ryan on behalf of the Regents of the University of California.

Reviewing Editor

  1. Elisa Izaurralde, Max Planck Institute Development Biology, Germany

Version history

  1. Received: June 16, 2014
  2. Accepted: August 17, 2014
  3. Accepted Manuscript published: August 19, 2014 (version 1)
  4. Version of Record published: September 15, 2014 (version 2)

Copyright

© 2014, Ryan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,478
    views
  • 2,478
    downloads
  • 304
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Owen W Ryan
  2. Jeffrey M Skerker
  3. Matthew J Maurer
  4. Xin Li
  5. Jordan C Tsai
  6. Snigdha Poddar
  7. Michael E Lee
  8. Will DeLoache
  9. John E Dueber
  10. Adam P Arkin
  11. Jamie H D Cate
(2014)
Selection of chromosomal DNA libraries using a multiplex CRISPR system
eLife 3:e03703.
https://doi.org/10.7554/eLife.03703

Share this article

https://doi.org/10.7554/eLife.03703

Further reading

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.

    1. Structural Biology and Molecular Biophysics
    Christian Galicia, Giambattista Guaitoli ... Wim Versées
    Research Article

    Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson’s disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.