A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family

  1. Qing Yao
  2. Qiuhe Lu
  3. Xiaobo Wan
  4. Feng Song
  5. Yue Xu
  6. Mo Hu
  7. Alla Zamyatina
  8. Xiaoyun Liu
  9. Niu Huang
  10. Ping Zhu
  11. Feng Shao  Is a corresponding author
  1. National Institute of Biological Sciences, China
  2. Institute of Biophysics, Chinese Academy of Sciences, China
  3. Peking University, China
  4. University of Natural Resources and Life Sciences, Austria

Abstract

A large group of bacterial virulence autotransporters including AIDA-I from diffusely adhering E. coli (DAEC) and TibA from enterotoxigenic E. coli (ETEC) require hyper-glycosylation for functioning. Here we demonstrate that TibC from ETEC harbors a heptosyltransferase activity on TibA and AIDA-I, defining a large family of bacterial autotransporter heptosyltransferases (BAHTs). Crystal structure of TibC reveals a characteristic ring-shape dodecamer. The protomer features an N-terminal β-barrel, a catalytic domain, a β-hairpin thumb and a unique iron-finger motif. The iron-finger motif contributes to back-to-back dimerization; six dimers form the ring through β-hairpin thumb-mediated hand-in-hand contact. Structure of ADP-D, D-heptose-bound TibC reveals a sugar transfer mechanism and also the ligand stereoselectivity determinant. Cryo-EM analyses uncover a TibC-TibA dodecamer/hexamer assembly with two enzyme molecules binding to one TibA substrate. The complex structure also highlights a high efficient hyperglycosylation of six autotransporter substrates simultaneously by the dodecamer enzyme complex.

Article and author information

Author details

  1. Qing Yao

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  2. Qiuhe Lu

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  3. Xiaobo Wan

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  4. Feng Song

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  5. Yue Xu

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  6. Mo Hu

    Peking University, Bejing, China
    Competing interests
    No competing interests declared.
  7. Alla Zamyatina

    University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  8. Xiaoyun Liu

    Peking University, Bejing, China
    Competing interests
    No competing interests declared.
  9. Niu Huang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  10. Ping Zhu

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  11. Feng Shao

    National Institute of Biological Sciences, Beijing, China
    For correspondence
    shaofeng@nibs.ac.cn
    Competing interests
    Feng Shao, Reviewing editor, eLife.

Reviewing Editor

  1. Wilfred van der Donk, University of Illinois-Urbana Champaign, United States

Version history

  1. Received: June 17, 2014
  2. Accepted: October 12, 2014
  3. Accepted Manuscript published: October 13, 2014 (version 1)
  4. Version of Record published: November 18, 2014 (version 2)

Copyright

© 2014, Yao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,700
    views
  • 405
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qing Yao
  2. Qiuhe Lu
  3. Xiaobo Wan
  4. Feng Song
  5. Yue Xu
  6. Mo Hu
  7. Alla Zamyatina
  8. Xiaoyun Liu
  9. Niu Huang
  10. Ping Zhu
  11. Feng Shao
(2014)
A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family
eLife 3:e03714.
https://doi.org/10.7554/eLife.03714

Share this article

https://doi.org/10.7554/eLife.03714

Further reading

    1. Structural Biology and Molecular Biophysics
    Christian Galicia, Giambattista Guaitoli ... Wim Versées
    Research Article

    Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson’s disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.