The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1

  1. Yangrong Cao
  2. Yan Liang
  3. Kiwamu Tanaka
  4. Cuong T Nguyen
  5. Robert P Jedrzejczak
  6. Andrzej Joachimiak
  7. Gary Stacey  Is a corresponding author
  1. University of Missouri, United States
  2. Washington State University, United States
  3. Argonne National Laboratory, United States

Abstract

Chitin is a fungal microbe-associated molecular pattern (MAMP) that is recognized in Arabidopsis by a lysin motif receptor kinase (LYK), AtCERK1. Previous research suggested that AtCERK1 is the major chitin receptor in plants and mediates chitin-induced signaling through homodimerization and phosphorylation. However, the reported chitin binding affinity of AtCERK1 is quite low, suggesting another receptor with high chitin binding affinity might be present. Here, we propose that AtLYK5 is the primary chitin receptor in Arabidopsis. Mutations in AtLYK5 resulted in a significant reduction in the plant chitin response. However, AtLYK5 shares overlapping function with AtLYK4 and, therefore, only AtLYK4/AtLYK5-2 double mutants show a complete loss of chitin response. AtLYK5 interacts with AtCERK1 in a chitin-dependent manner. Chitin binding to AtLYK5 is indispensable for chitin-induced AtCERK1 phosphorylation. AtLYK5 binds chitin at a higher affinity than AtCERK1. The data suggest that AtLYK5 is the primary receptor for chitin to induce plant immunity.

Article and author information

Author details

  1. Yangrong Cao

    University of Missouri, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yan Liang

    University of Missouri, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kiwamu Tanaka

    Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cuong T Nguyen

    University of Missouri, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert P Jedrzejczak

    Argonne National Laboratory, Argonne, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrzej Joachimiak

    Argonne National Laboratory, Argonne, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gary Stacey

    University of Missouri, Columbia, United States
    For correspondence
    Staceyg@missouri.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Thorsten Nürnberger, Tübingen University, Germany

Version history

  1. Received: June 27, 2014
  2. Accepted: October 22, 2014
  3. Accepted Manuscript published: October 23, 2014 (version 1)
  4. Version of Record published: November 12, 2014 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 9,998
    views
  • 1,968
    downloads
  • 431
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yangrong Cao
  2. Yan Liang
  3. Kiwamu Tanaka
  4. Cuong T Nguyen
  5. Robert P Jedrzejczak
  6. Andrzej Joachimiak
  7. Gary Stacey
(2014)
The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1
eLife 3:e03766.
https://doi.org/10.7554/eLife.03766

Share this article

https://doi.org/10.7554/eLife.03766

Further reading

    1. Plant Biology
    Ivan Kulich, Julia Schmid ... Jiří Friml
    Research Article

    Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.

    1. Plant Biology
    Daniel S Yu, Megan A Outram ... Simon J Williams
    Research Article

    Plant pathogens secrete proteins, known as effectors, that function in the apoplast or inside plant cells to promote virulence. Effector recognition by cell-surface or cytosolic receptors results in the activation of defence pathways and plant immunity. Despite their importance, our general understanding of fungal effector function and recognition by immunity receptors remains poor. One complication often associated with effectors is their high sequence diversity and lack of identifiable sequence motifs precluding prediction of structure or function. In recent years, several studies have demonstrated that fungal effectors can be grouped into structural classes, despite significant sequence variation and existence across taxonomic groups. Using protein X-ray crystallography, we identify a new structural class of effectors hidden within the secreted in xylem (SIX) effectors from Fusarium oxysporum f. sp. lycopersici (Fol). The recognised effectors Avr1 (SIX4) and Avr3 (SIX1) represent the founding members of the Fol dual-domain (FOLD) effector class, with members containing two distinct domains. Using AlphaFold2, we predicted the full SIX effector repertoire of Fol and show that SIX6 and SIX13 are also FOLD effectors, which we validated experimentally for SIX6. Based on structural prediction and comparisons, we show that FOLD effectors are present within three divisions of fungi and are expanded in pathogens and symbionts. Further structural comparisons demonstrate that Fol secretes effectors that adopt a limited number of structural folds during infection of tomato. This analysis also revealed a structural relationship between transcriptionally co-regulated effector pairs. We make use of the Avr1 structure to understand its recognition by the I receptor, which leads to disease resistance in tomato. This study represents an important advance in our understanding of Fol-tomato, and by extension plant–fungal interactions, which will assist in the development of novel control and engineering strategies to combat plant pathogens.