Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia

  1. Shanping Chen
  2. Diancai Cai
  3. Kaycey Pearce
  4. Philip Y W Sun
  5. Adam C Roberts
  6. David L Glanzman  Is a corresponding author
  1. Univeristy of California, Los Angeles, United States

Abstract

Long-term memory (LTM) is believed to be stored in the brain as changes in synaptic connections. Here, we show that LTM storage and synaptic change can be dissociated. Cocultures of Aplysia sensory and motor neurons were trained with spaced pulses of serotonin, which induces long-term facilitation. Serotonin (5HT) triggered growth of new presynaptic varicosities, a synaptic mechanism of long-term sensitization. Following 5HT training, two antimnemonic treatments-reconsolidation blockade and inhibition of PKM-caused the number of presynaptic varicosities to revert to the original, pretraining value. Surprisingly, the final synaptic structure was not achieved by targeted retraction of the 5HT-induced varicosities but, rather, by an apparently arbitrary retraction of both 5HT-induced and original synapses. In addition, we find evidence that the LTM for sensitization persists covertly after its apparent elimination by the same antimnemonic treatments that erase learning-related synaptic growth. These results challenge the idea that stable synapses store long-term memories.

Article and author information

Author details

  1. Shanping Chen

    Univeristy of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Diancai Cai

    Univeristy of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kaycey Pearce

    Univeristy of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Philip Y W Sun

    Univeristy of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Adam C Roberts

    Univeristy of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. David L Glanzman

    Univeristy of California, Los Angeles, Los Angeles, United States
    For correspondence
    dglanzman@physci.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Version history

  1. Received: July 4, 2014
  2. Accepted: November 13, 2014
  3. Accepted Manuscript published: November 17, 2014 (version 1)
  4. Version of Record published: December 12, 2014 (version 2)

Copyright

© 2014, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 20,252
    views
  • 1,617
    downloads
  • 120
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shanping Chen
  2. Diancai Cai
  3. Kaycey Pearce
  4. Philip Y W Sun
  5. Adam C Roberts
  6. David L Glanzman
(2014)
Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia
eLife 3:e03896.
https://doi.org/10.7554/eLife.03896

Share this article

https://doi.org/10.7554/eLife.03896

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.