Functional fission of parvalbumin interneuron classes during fast network events

  1. Csaba Varga  Is a corresponding author
  2. Mikko Oijala
  3. Jonathan Lish
  4. Gergely G Szabo
  5. Marianne Bezaire
  6. Ivan Marchionni
  7. Peyman Golshani
  8. Ivan Soltesz
  1. University of California, Irvine, United States
  2. David Geffen School of Medicine, University of California, Los Angeles, United States

Abstract

Fast spiking, parvalbumin (PV) expressing hippocampal interneurons are classified into basket, axo-axonic (chandelier) and bistratified cells. These cell classes play key roles in regulating local circuit operations and rhythmogenesis by releasing GABA in precise temporal patterns onto distinct domains of principal cells. Here we show that each of the three major PV cell classes further splits into functionally distinct subclasses during fast network events in vivo. During the slower (<10Hz) theta oscillations, each cell class exhibited its own characteristic, relatively uniform firing behavior. However, during faster (>90Hz) oscillations, within-class differences in PV interneuron discharges emerged that segregated along specific features of dendritic structure or somatic location. Functional divergence of PV subclasses during fast but not slow network oscillations effectively doubles the repertoire of spatio-temporal patterns of GABA release available for rapid circuit operations.

Article and author information

Author details

  1. Csaba Varga

    University of California, Irvine, Irvine, United States
    For correspondence
    csaba.varga@aok.pte.hu
    Competing interests
    The authors declare that no competing interests exist.
  2. Mikko Oijala

    University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jonathan Lish

    University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gergely G Szabo

    University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marianne Bezaire

    University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ivan Marchionni

    University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Peyman Golshani

    David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ivan Soltesz

    University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Frances K Skinner, University Health Network, and University of Toronto, Canada

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were approved by the University of California Irvine Animal Care and Use Committee (protocol #1999-1719) and the University of Pecs, Hungary . All surgery was performed under deep isoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: July 14, 2014
  2. Accepted: November 6, 2014
  3. Accepted Manuscript published: November 6, 2014 (version 1)
  4. Version of Record published: December 4, 2014 (version 2)

Copyright

© 2014, Varga et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,471
    views
  • 545
    downloads
  • 92
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Csaba Varga
  2. Mikko Oijala
  3. Jonathan Lish
  4. Gergely G Szabo
  5. Marianne Bezaire
  6. Ivan Marchionni
  7. Peyman Golshani
  8. Ivan Soltesz
(2014)
Functional fission of parvalbumin interneuron classes during fast network events
eLife 3:e04006.
https://doi.org/10.7554/eLife.04006

Share this article

https://doi.org/10.7554/eLife.04006

Further reading

    1. Neuroscience
    Mischa Vance Bandet, Ian Robert Winship
    Research Article

    Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within ‘remapped’ forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.

    1. Neuroscience
    Renbo Mao, Jianjun Yu ... Yi Rao
    Tools and Resources

    Dissection of neural circuitry underlying behaviors is a central theme in neurobiology. We have previously proposed the concept of chemoconnectome (CCT) to cover the entire chemical transmission between neurons and target cells in an organism and created tools for studying it (CCTomics) by targeting all genes related to the CCT in Drosophila. Here we have created lines targeting the CCT in a conditional manner after modifying GFP RNA interference, Flp-out, and CRISPR/Cas9 technologies. All three strategies have been validated to be highly effective, with the best using chromatin-peptide fused Cas9 variants and scaffold optimized sgRNAs. As a proof of principle, we conducted a comprehensive intersection analysis of CCT genes expression profiles in the clock neurons, uncovering 43 CCT genes present in clock neurons. Specific elimination of each from clock neurons revealed that loss of the neuropeptide CNMa in two posterior dorsal clock neurons (DN1ps) or its receptor (CNMaR) caused advanced morning activity, indicating a suppressive role of CNMa-CNMaR on morning anticipation, opposite to the promoting role of PDF-PDFR on morning anticipation. These results demonstrate the effectiveness of conditional CCTomics and its tools created here and establish an antagonistic relationship between CNMa-CNMaR and PDF-PDFR signaling in regulating morning anticipation.