FGF14 modulates resurgent sodium current in mouse cerebellar Purkinje neurons

  1. Haidun Yan
  2. Juan L Pablo
  3. Chaojian Wang
  4. Geoffrey S Pitt  Is a corresponding author
  1. Duke University Medical Center, United States

Abstract

Rapid firing of cerebellar Purkinje neurons is facilitated in part by a voltage-gated Na+ (NaV) 'resurgent' current, which allows renewed Na+ influx during membrane repolarization. Resurgent current results from unbinding of a blocking particle that competes with normal channel inactivation. The underlying molecular components contributing to resurgent current have not been fully identified. Here, we show that the NaV channel auxiliary subunit FGF14 'b' isoform, a locus for inherited spinocerebellar ataxias, controls resurgent current and repetitive firing in Purkinje neurons. FGF14 knockdown biased NaV channels towards the inactivated state by decreasing channel availability, diminishing the 'late' NaV current, and accelerating channel inactivation rate, thereby reducing resurgent current and repetitive spiking. Critical for these effects was both the alternatively spliced FGF14b N-terminus and direct interaction between FGF14b and the NaV C-terminus. Together, these data suggest that the FGF14b N-terminus is a potent regulator of resurgent NaV current in cerebellar Purkinje neurons.

Article and author information

Author details

  1. Haidun Yan

    Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Juan L Pablo

    Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chaojian Wang

    Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Geoffrey S Pitt

    Duke University Medical Center, Durham, United States
    For correspondence
    geoffrey.pitt@duke.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) of Duke University for the protocol #A292-13-11.

Version history

  1. Received: July 30, 2014
  2. Accepted: September 29, 2014
  3. Accepted Manuscript published: September 30, 2014 (version 1)
  4. Version of Record published: October 21, 2014 (version 2)

Copyright

© 2014, Yan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,755
    views
  • 210
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haidun Yan
  2. Juan L Pablo
  3. Chaojian Wang
  4. Geoffrey S Pitt
(2014)
FGF14 modulates resurgent sodium current in mouse cerebellar Purkinje neurons
eLife 3:e04193.
https://doi.org/10.7554/eLife.04193

Share this article

https://doi.org/10.7554/eLife.04193

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.