A striatal-enriched intronic GPCR modulates huntingtin levels and toxicity

  1. Yuwei Yao
  2. Xiaotian Cui
  3. Ismael Al-Ramahi
  4. Xiaoli Sun
  5. Bo Li
  6. Jiapeng Hou
  7. Marian Difiglia
  8. James Palacino
  9. Zhi-Ying Wu
  10. Lixiang Ma
  11. Juan Botas
  12. Boxun Lu  Is a corresponding author
  1. Fudan University, China
  2. Baylor College of Medicine, United States
  3. Massachusetts General Hospital, United States
  4. Novartis Institutes for Biomedical Research, United States
  5. Zhejiang University, China

Abstract

Huntington's disease (HD) represents an important model for neurodegenerative disorders and proteinopathies. It is mainly caused by cytotoxicity of the mutant huntingtin protein (Htt) with an expanded polyQ stretch. While Htt is ubiquitously expressed, HD is characterized by selective neurodegeneration of the striatum. Here we report a striatal-enriched orphan G protein-coupled receptor(GPCR) Gpr52 as a stabilizer of Htt in vitro and in vivo. Gpr52 modulates Htt via cAMP-dependent but PKA independent mechanisms. Gpr52 is located within an intron of Rabgap1l, which exhibits epistatic effects on Gpr52-mediated modulation of Htt levels by inhibiting its substrate Rab39B, which co-localizes with Htt and translocates Htt to the endoplasmic reticulum. Finally, reducing Gpr52 suppresses HD phenotypes in both patient iPS-derived neurons and in vivo Drosophila HD models. Thus, our discovery reveals modulation of Htt levels by a striatal-enriched GPCR via its GPCR function, providing insights into the selective neurodegeneration and potential treatment strategies.

Article and author information

Author details

  1. Yuwei Yao

    State Key Laboratory of Genetic Engineering, Department of Biophysics, School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaotian Cui

    State Key Laboratory of Genetic Engineering, Department of Biophysics, School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Ismael Al-Ramahi

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaoli Sun

    State Key Laboratory of Genetic Engineering, Department of Biophysics, School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Bo Li

    State Key Laboratory of Genetic Engineering, Department of Biophysics, School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiapeng Hou

    State Key Laboratory of Genetic Engineering, Department of Biophysics, School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Marian Difiglia

    MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. James Palacino

    Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhi-Ying Wu

    Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Lixiang Ma

    Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Juan Botas

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Boxun Lu

    State Key Laboratory of Genetic Engineering, Department of Biophysics, School of Life Sciences, Fudan University, Shanghai, China
    For correspondence
    luboxun@fudan.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Ethics

Animal experimentation: The mouse experiments were carried out following the general guidelines published by the Association for Assessment and Accreditation of Laboratory Animal Care. The Animal Care and Use Committee of the School of Medicine at Fudan University approved the protocol used in animal experiments (Approval #20140904).

Human subjects: The study involves obtaining dermal fibroblasts from human patients. The study was approved by the ethic community of IBS at Fudan University (No.28), strictly following their general guidelines for experiments involving human subjects. Verbal and written informed consent, and the consent to publish, were obtained from all patients.

Version history

  1. Received: November 7, 2014
  2. Accepted: March 2, 2015
  3. Accepted Manuscript published: March 4, 2015 (version 1)
  4. Version of Record published: March 25, 2015 (version 2)

Copyright

© 2015, Yao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,981
    views
  • 1,069
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuwei Yao
  2. Xiaotian Cui
  3. Ismael Al-Ramahi
  4. Xiaoli Sun
  5. Bo Li
  6. Jiapeng Hou
  7. Marian Difiglia
  8. James Palacino
  9. Zhi-Ying Wu
  10. Lixiang Ma
  11. Juan Botas
  12. Boxun Lu
(2015)
A striatal-enriched intronic GPCR modulates huntingtin levels and toxicity
eLife 4:e05449.
https://doi.org/10.7554/eLife.05449

Share this article

https://doi.org/10.7554/eLife.05449

Further reading

    1. Neuroscience
    Yu-Feng Xie, Jane Yang ... Steven A Prescott
    Research Article

    Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy – achieving similar function using different components – and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.

    1. Neuroscience
    Mischa Vance Bandet, Ian Robert Winship
    Research Article

    Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within ‘remapped’ forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.