Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena)

  1. Danuta M Wisniewska  Is a corresponding author
  2. John M Ratcliffe
  3. Kristian Beedholm
  4. Christian B Christensen
  5. Mark Johnson
  6. Jens C Koblitz
  7. Magnus Wahlberg
  8. Peter T Madsen
  1. Aarhus University, Denmark
  2. University of Southern Denmark, Denmark
  3. University of St Andrews, Scotland
  4. University of Tübingen, Germany

Abstract

Toothed whales use sonar to detect, locate, and track prey. They adjust emitted sound intensity, auditory sensitivity and click rate to target range, and terminate prey pursuits with high-repetition-rate, low-intensity buzzes. However, their narrow acoustic field of view (FOV) is considered stable throughout target approach, which could facilitate prey escape at close-range. Here we show that, like some bats, harbour porpoises can broaden their biosonar beam during the terminal phase of attack but, unlike bats, maintain the ability to change beamwidth within this phase. Based on video, MRI, and acoustic-tag recordings, we propose this flexibility is modulated by the melon and implemented to accommodate dynamic spatial relationships with prey and acoustic complexity of surroundings. Despite independent evolution and different means of sound generation and transmission, whales and bats adaptively change their FOV, suggesting that beamwidth flexibility has been an important driver in the evolution of echolocation for prey tracking.

Article and author information

Author details

  1. Danuta M Wisniewska

    Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
    For correspondence
    danuta.wisniewska@bios.au.dk
    Competing interests
    The authors declare that no competing interests exist.
  2. John M Ratcliffe

    Sound and Behaviour Group, Institute of Biology, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Kristian Beedholm

    Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Christian B Christensen

    Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Mark Johnson

    Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
    Competing interests
    The authors declare that no competing interests exist.
  6. Jens C Koblitz

    Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Magnus Wahlberg

    Sound and Behaviour Group, Institute of Biology, University of Southern Denmark, Odense M, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  8. Peter T Madsen

    Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Russ Fernald, Stanford University, United States

Ethics

Animal experimentation: The animals are maintained by Fjord&Belt, Denmark, under permits no. SN 343/FY-0014 from the Danish Ministry of Food, Agriculture and Fisheries, and 1996-3446-0021 from the Danish Forest and Nature Agency (under the Danish Ministry of the Environment). Their care and all experiments are in strict accordance with the recommendations of the Danish Ministry of Food, Agriculture and Fisheries (issuing the permit to keep the animals), the Danish Ministry of the Environment (permit for catching the animals) and the Danish Council for Experiments on Animals (always contacted for permits when appropriate - but in the case of this study such permit was not required).

Version history

  1. Received: November 18, 2014
  2. Accepted: March 19, 2015
  3. Accepted Manuscript published: March 20, 2015 (version 1)
  4. Version of Record published: April 29, 2015 (version 2)

Copyright

© 2015, Wisniewska et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,815
    views
  • 589
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Danuta M Wisniewska
  2. John M Ratcliffe
  3. Kristian Beedholm
  4. Christian B Christensen
  5. Mark Johnson
  6. Jens C Koblitz
  7. Magnus Wahlberg
  8. Peter T Madsen
(2015)
Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena)
eLife 4:e05651.
https://doi.org/10.7554/eLife.05651

Share this article

https://doi.org/10.7554/eLife.05651

Further reading

  1. Porpoises use a sophisticated sonar system to locate and track prey.

    1. Ecology
    2. Evolutionary Biology
    Théo Constant, F Stephen Dobson ... Sylvain Giroud
    Research Article

    Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the ‘life-history’ hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.