Cerebellar associative sensory learning defects in five mouse autism models

  1. Alexander D Kloth
  2. Aleksandra Badura
  3. Amy Li
  4. Adriana Cherskov
  5. Sara G Connolly
  6. Andrea Giovannucci
  7. M Ali Bangash
  8. Giorgio Grasselli
  9. Olga Peñagarikano
  10. Claire Piochon
  11. Peter T Tsai
  12. Daniel H Geschwind
  13. Christian Hansel
  14. Mustafa Sahin
  15. Toru Takumi
  16. Paul F Worley
  17. Samuel S H Wang  Is a corresponding author
  1. Princeton University, United States
  2. Johns Hopkins University School of Medicine, United States
  3. University of Chicago, United States
  4. University of California, Los Angeles, United States
  5. Harvard Medical School, United States
  6. RIKEN Brain Science Institute, Japan

Abstract

Sensory integration difficulties have been reported in autism, but their underlying brain-circuit mechanisms are underexplored. Using five autism-related mouse models, Shank3+/ΔC, Mecp2R308/Y, Cntnap2-/-, L7-Tsc1 (L7/Pcp2Cre::Tsc1flox/+) and patDp(15q11-13)/+, we report specific perturbations in delay eyeblink conditioning, a form of associative sensory learning requiring cerebellar plasticity. By distinguishing perturbations in the probability and characteristics of learned responses, we found that probability was reduced in Cntnap2-/-, patDp(15q11-13)/+, and L7/Pcp2Cre::Tsc1flox/+, all associated with Purkinje-cell/deep-nuclear gene expression, along with Shank3+/ΔC. Amplitudes were smaller in L7/Pcp2Cre::Tsc1flox/+ as well as Shank3+/ΔC and Mecp2R308/Y, which are associated with granule-cell pathway expression. Shank3+/ΔC and Mecp2R308/Y also showed aberrant response timing and reduced Purkinje-cell dendritic spine density. Overall, our observations are potentially accounted for by defects in instructed learning in the olivocerebellar loop and response representation in the granule cell pathway. Our findings indicate that defects in associative temporal binding of sensory events are widespread in autism mouse models.

Article and author information

Author details

  1. Alexander D Kloth

    Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Aleksandra Badura

    Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amy Li

    Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adriana Cherskov

    Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sara G Connolly

    Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrea Giovannucci

    Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. M Ali Bangash

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Giorgio Grasselli

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Olga Peñagarikano

    Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Claire Piochon

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter T Tsai

    The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Daniel H Geschwind

    Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Christian Hansel

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Mustafa Sahin

    The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Toru Takumi

    RIKEN Brain Science Institute, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  16. Paul F Worley

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Samuel S H Wang

    Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    sswang@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Michael Häusser, University College London, United Kingdom

Ethics

Animal experimentation: All experiments were performed according to protocols (#1943-13) approved by the Princeton University Institutional Animal Care and Use Committee. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: December 13, 2014
  2. Accepted: July 3, 2015
  3. Accepted Manuscript published: July 9, 2015 (version 1)
  4. Version of Record published: July 24, 2015 (version 2)

Copyright

© 2015, Kloth et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,020
    views
  • 1,375
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander D Kloth
  2. Aleksandra Badura
  3. Amy Li
  4. Adriana Cherskov
  5. Sara G Connolly
  6. Andrea Giovannucci
  7. M Ali Bangash
  8. Giorgio Grasselli
  9. Olga Peñagarikano
  10. Claire Piochon
  11. Peter T Tsai
  12. Daniel H Geschwind
  13. Christian Hansel
  14. Mustafa Sahin
  15. Toru Takumi
  16. Paul F Worley
  17. Samuel S H Wang
(2015)
Cerebellar associative sensory learning defects in five mouse autism models
eLife 4:e06085.
https://doi.org/10.7554/eLife.06085

Share this article

https://doi.org/10.7554/eLife.06085

Further reading

    1. Neuroscience
    Yu-Feng Xie, Jane Yang ... Steven A Prescott
    Research Article

    Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy – achieving similar function using different components – and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.

    1. Neuroscience
    Mischa Vance Bandet, Ian Robert Winship
    Research Article

    Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within ‘remapped’ forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.