Building accurate sequence-to-affinity models from high-throughput in vitro protein-DNA binding data using FeatureREDUCE

Abstract

Transcription factors are crucial regulators of gene expression. Accurate quantitative definition of their intrinsic DNA binding preferences is critical to understanding their biological function. High-throughput in vitro technology has recently been used to deeply probe the DNA binding specificity of hundreds of eukaryotic transcription factors, yet algorithms for analyzing such data have not yet fully matured. Here we present a general framework (FeatureREDUCE) for building sequence-to-affinity models based on a biophysically interpretable and extensible model of protein-DNA interaction that can account for dependencies between nucleotides within the binding interface or multiple modes of binding. When training on protein binding microarray (PBM) data, we use robust regression and modeling of technology-specific biases to infer specificity models of unprecedented accuracy and precision. We provide quantitative validation of our results by comparing to gold-standard data when available.

Article and author information

Author details

  1. Todd R Riley

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Allan Lazarovici

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard S Mann

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Harmen J Bussemaker

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    hjb2004@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Nir Friedman, The Hebrew University of Jerusalem, Israel

Version history

  1. Received: January 8, 2015
  2. Accepted: December 20, 2015
  3. Accepted Manuscript published: December 23, 2015 (version 1)
  4. Version of Record published: February 9, 2016 (version 2)

Copyright

© 2015, Riley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,695
    views
  • 376
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Todd R Riley
  2. Allan Lazarovici
  3. Richard S Mann
  4. Harmen J Bussemaker
(2015)
Building accurate sequence-to-affinity models from high-throughput in vitro protein-DNA binding data using FeatureREDUCE
eLife 4:e06397.
https://doi.org/10.7554/eLife.06397

Share this article

https://doi.org/10.7554/eLife.06397

Further reading

    1. Computational and Systems Biology
    David Geller-McGrath, Kishori M Konwar ... Jason E McDermott
    Tools and Resources

    The reconstruction of complete microbial metabolic pathways using ‘omics data from environmental samples remains challenging. Computational pipelines for pathway reconstruction that utilize machine learning methods to predict the presence or absence of KEGG modules in incomplete genomes are lacking. Here, we present MetaPathPredict, a software tool that incorporates machine learning models to predict the presence of complete KEGG modules within bacterial genomic datasets. Using gene annotation data and information from the KEGG module database, MetaPathPredict employs deep learning models to predict the presence of KEGG modules in a genome. MetaPathPredict can be used as a command line tool or as a Python module, and both options are designed to be run locally or on a compute cluster. Benchmarks show that MetaPathPredict makes robust predictions of KEGG module presence within highly incomplete genomes.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kenya Hitomi, Yoichiro Ishii, Bei-Wen Ying
    Research Article

    As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.