The critical role of membralin in postnatal motor neuron survival and disease

  1. Bo Yang
  2. Mingliang Qu
  3. Rengang Wang
  4. Jon E Chatterton
  5. Xiao-Bo Liu
  6. Bing Zhu
  7. Sonoko Narisawa
  8. Jose Luis Millan
  9. Nobuki Nakanishi
  10. Kathryn Swoboda
  11. Stuart A Lipton
  12. Dongxian Zhang  Is a corresponding author
  1. Eugenom, Inc., United States
  2. Shanghai Yuanqi Clinical Lab Ltd., China
  3. Sanford-Burnham Medical Research Institute, United States
  4. University of California, Davis, United States
  5. Massachusetts General Hospital, United States

Abstract

Hitherto, membralin has been a protein of unknown function. Here, we show that membralin mutant mice manifest a severe and early-onset motor neuron disease in an autosomal recessive manner, dying by postnatal day 5-6. Selective death of lower motor neurons, including those innervating the limbs, intercostal muscles, and diaphragm, are predominantly responsible for this fatal phenotype. Neural expression of a membralin transgene completely rescues membralin mutant mice. Mechanistically, we show that membralin interacts with Erlin2, an endoplasmic reticulum (ER) membrane protein that is located in lipid rafts and known to be important in ER-associated protein degradation (ERAD). Accordingly, the degradation rate of ERAD substrates is attenuated in cells lacking membralin. Membralin mutations or deficiency in mouse models induce ER stress, rendering neurons more vulnerable to cell death. Our study reveals a critical role of membralin in motor neuron survival and suggests a novel mechanism for early-onset motor neuron disease.

Article and author information

Author details

  1. Bo Yang

    Eugenom, Inc., San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mingliang Qu

    Shanghai Yuanqi Clinical Lab Ltd., Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Rengang Wang

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jon E Chatterton

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiao-Bo Liu

    Electron Microscopy Laboratory, Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bing Zhu

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sonoko Narisawa

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jose Luis Millan

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nobuki Nakanishi

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kathryn Swoboda

    Department of Neurology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Stuart A Lipton

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Dongxian Zhang

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    For correspondence
    dzhang@sbmri.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Freda Miller, The Hospital for Sick Children Research Institute, University of Toronto, Canada

Ethics

Animal experimentation: All described procedures for animal were approved by the Institutional Animal Care and Use Committee of Sanford-Burnham Medical Research Institute and conducted in compliance with the Guide for the Care and Use of Laboratory Animals (Animal Use Form #14-060). Both sexes of mice were used for experiments and maintained in an institute facility accredited by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

Version history

  1. Received: January 15, 2015
  2. Accepted: May 15, 2015
  3. Accepted Manuscript published: May 15, 2015 (version 1)
  4. Version of Record published: June 10, 2015 (version 2)

Copyright

© 2015, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,688
    views
  • 355
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bo Yang
  2. Mingliang Qu
  3. Rengang Wang
  4. Jon E Chatterton
  5. Xiao-Bo Liu
  6. Bing Zhu
  7. Sonoko Narisawa
  8. Jose Luis Millan
  9. Nobuki Nakanishi
  10. Kathryn Swoboda
  11. Stuart A Lipton
  12. Dongxian Zhang
(2015)
The critical role of membralin in postnatal motor neuron survival and disease
eLife 4:e06500.
https://doi.org/10.7554/eLife.06500

Share this article

https://doi.org/10.7554/eLife.06500

Further reading

    1. Neuroscience
    Mischa Vance Bandet, Ian Robert Winship
    Research Article

    Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within ‘remapped’ forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.

    1. Neuroscience
    Renbo Mao, Jianjun Yu ... Yi Rao
    Tools and Resources

    Dissection of neural circuitry underlying behaviors is a central theme in neurobiology. We have previously proposed the concept of chemoconnectome (CCT) to cover the entire chemical transmission between neurons and target cells in an organism and created tools for studying it (CCTomics) by targeting all genes related to the CCT in Drosophila. Here we have created lines targeting the CCT in a conditional manner after modifying GFP RNA interference, Flp-out, and CRISPR/Cas9 technologies. All three strategies have been validated to be highly effective, with the best using chromatin-peptide fused Cas9 variants and scaffold optimized sgRNAs. As a proof of principle, we conducted a comprehensive intersection analysis of CCT genes expression profiles in the clock neurons, uncovering 43 CCT genes present in clock neurons. Specific elimination of each from clock neurons revealed that loss of the neuropeptide CNMa in two posterior dorsal clock neurons (DN1ps) or its receptor (CNMaR) caused advanced morning activity, indicating a suppressive role of CNMa-CNMaR on morning anticipation, opposite to the promoting role of PDF-PDFR on morning anticipation. These results demonstrate the effectiveness of conditional CCTomics and its tools created here and establish an antagonistic relationship between CNMa-CNMaR and PDF-PDFR signaling in regulating morning anticipation.