MutS/MutL crystal structure reveals that the MutS sliding clamp loads MutL onto DNA

  1. Flora S Groothuizen
  2. Ines Winkler
  3. Michele Cristóvão
  4. Alexander Fish
  5. Herrie H K Winterwerp
  6. Annet Reumer
  7. Andreas D Marx
  8. Nicolaas Hermans
  9. Robert A Nicholls
  10. Garib N Murshudov
  11. Joyce H G Lebbink
  12. Peter Friedhoff
  13. Titia K Sixma  Is a corresponding author
  1. Netherlands Cancer Institute, Netherlands
  2. Justus-Liebig-University, Germany
  3. Erasmus Medical Center, Netherlands
  4. MRC Laboratory of Molecular Biology, United Kingdom

Abstract

To avoid mutations in the genome, DNA replication is generally followed by DNA mismatch repair (MMR). MMR starts when a MutS homolog recognizes a mismatch and undergoes an ATP-dependent transformation to an elusive sliding clamp state. How this transient state promotes MutL homolog recruitment and activation of repair is unclear. Here we present a crystal structure of the MutS/MutL complex using a site-specifically crosslinked complex and examine how large conformational changes lead to activation of MutL. The structure captures MutS in the sliding clamp conformation, where tilting of the MutS subunits across each other pushes DNA into a new channel, and reorientation of the connector domain creates an interface for MutL with both MutS subunits. Our work explains how the sliding clamp promotes loading of MutL onto DNA, to activate downstream effectors. We thus elucidate a crucial mechanism that ensures that MMR is initiated only after detection of a DNA mismatch.

Article and author information

Author details

  1. Flora S Groothuizen

    Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Ines Winkler

    Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Michele Cristóvão

    Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexander Fish

    Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Herrie H K Winterwerp

    Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Annet Reumer

    Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Andreas D Marx

    Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Nicolaas Hermans

    Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Robert A Nicholls

    Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Garib N Murshudov

    Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Joyce H G Lebbink

    Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  12. Peter Friedhoff

    Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Titia K Sixma

    Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
    For correspondence
    t.sixma@nki.nl
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Leemor Joshua-Tor, Cold Spring Harbor Laboratory, United States

Version history

  1. Received: January 28, 2015
  2. Accepted: July 10, 2015
  3. Accepted Manuscript published: July 11, 2015 (version 1)
  4. Version of Record published: July 31, 2015 (version 2)

Copyright

© 2015, Groothuizen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,673
    views
  • 1,151
    downloads
  • 89
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Flora S Groothuizen
  2. Ines Winkler
  3. Michele Cristóvão
  4. Alexander Fish
  5. Herrie H K Winterwerp
  6. Annet Reumer
  7. Andreas D Marx
  8. Nicolaas Hermans
  9. Robert A Nicholls
  10. Garib N Murshudov
  11. Joyce H G Lebbink
  12. Peter Friedhoff
  13. Titia K Sixma
(2015)
MutS/MutL crystal structure reveals that the MutS sliding clamp loads MutL onto DNA
eLife 4:e06744.
https://doi.org/10.7554/eLife.06744

Share this article

https://doi.org/10.7554/eLife.06744

Further reading

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.

    1. Structural Biology and Molecular Biophysics
    Christian Galicia, Giambattista Guaitoli ... Wim Versées
    Research Article

    Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson’s disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.