The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO2

  1. Pierre-Louis Ruffault
  2. Fabien D'Autréaux
  3. John A Hayes
  4. Marc Nomaksteinsky
  5. Sandra Autran
  6. Tomoyuki Fujiyama
  7. Mikio Hoshino
  8. Martin Hägglund
  9. Ole Kiehn
  10. Jean-François Brunet  Is a corresponding author
  11. Gilles Fortin
  12. Christo Goridis
  1. Neuroscience Paris-Saclay Institute, France
  2. Ecole normale supérieure, France
  3. National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
  4. Karolinska Institutet, Sweden

Abstract

Maintaining constant CO2 and H+ concentrations in the arterial blood is critical for life. The principal mechanism through which this is achieved in mammals is the respiratory chemoreflex whose circuitry is still elusive. A candidate element of this circuitry is the retrotrapezoid nucleus (RTN), a collection of neurons at the ventral medullary surface that are activated by increased CO2 or low pH and project to the respiratory rhythm generator. Here, we use intersectional genetic strategies to lesion the RTN neurons defined by Atoh1 and Phox2b expression and to block or activate their synaptic output. Photostimulation of these neurons entrains the respiratory rhythm. Conversely, abrogating expression of Atoh1 or Phox2b or glutamatergic transmission in these cells curtails the phrenic nerve response to low pH in embryonic preparations and abolishes the respiratory chemoreflex in behaving animals. Thus, the RTN neurons expressing Atoh1 and Phox2b are a necessary component of the chemoreflex circuitry.

Article and author information

Author details

  1. Pierre-Louis Ruffault

    Neuroscience Paris-Saclay Institute, Gif sur Yvette, France
    Competing interests
    No competing interests declared.
  2. Fabien D'Autréaux

    Institut de Biologie de l'ENS, Ecole normale supérieure, Paris, France
    Competing interests
    No competing interests declared.
  3. John A Hayes

    Neuroscience Paris-Saclay Institute, Gif sur Yvette, France
    Competing interests
    No competing interests declared.
  4. Marc Nomaksteinsky

    Institut de Biologie de l'ENS, Ecole normale supérieure, Paris, France
    Competing interests
    No competing interests declared.
  5. Sandra Autran

    Neuroscience Paris-Saclay Institute, Gif-sur-Yvette, France
    Competing interests
    No competing interests declared.
  6. Tomoyuki Fujiyama

    Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
    Competing interests
    No competing interests declared.
  7. Mikio Hoshino

    Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
    Competing interests
    No competing interests declared.
  8. Martin Hägglund

    Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  9. Ole Kiehn

    Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    Ole Kiehn, Reviewing editor, eLife.
  10. Jean-François Brunet

    Institut de Biologie de l'ENS, Ecole normale supérieure, Paris, France
    For correspondence
    jfbrunet@biologie.ens.fr
    Competing interests
    No competing interests declared.
  11. Gilles Fortin

    Neuroscience Paris-Saclay Institute, Gif-sur-Yvette, France
    Competing interests
    No competing interests declared.
  12. Christo Goridis

    Institut de Biologie de l'ENS, Ecole normale supérieure, Paris, France
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Marlene Bartos, Albert-Ludwigs-Universität Freiburg, Germany

Ethics

Animal experimentation: The protocol for this study was approved by the National Committee on the Ethics of Animal Experiments Charles Darwin (Permit Number: Ce5/2012/065).

Version history

  1. Received: February 17, 2015
  2. Accepted: April 9, 2015
  3. Accepted Manuscript published: April 13, 2015 (version 1)
  4. Version of Record published: May 13, 2015 (version 2)

Copyright

© 2015, Ruffault et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,085
    views
  • 665
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pierre-Louis Ruffault
  2. Fabien D'Autréaux
  3. John A Hayes
  4. Marc Nomaksteinsky
  5. Sandra Autran
  6. Tomoyuki Fujiyama
  7. Mikio Hoshino
  8. Martin Hägglund
  9. Ole Kiehn
  10. Jean-François Brunet
  11. Gilles Fortin
  12. Christo Goridis
(2015)
The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO2
eLife 4:e07051.
https://doi.org/10.7554/eLife.07051

Share this article

https://doi.org/10.7554/eLife.07051

Further reading

    1. Neuroscience
    Hao Li, Jingyu Feng ... Jufang He
    Research Article

    Cholecystokinin (CCK) is an essential modulator for neuroplasticity in sensory and emotional domains. Here, we investigated the role of CCK in motor learning using a single pellet reaching task in mice. Mice with a knockout of Cck gene (Cck−/−) or blockade of CCK-B receptor (CCKBR) showed defective motor learning ability; the success rate of retrieving reward remained at the baseline level compared to the wildtype mice with significantly increased success rate. We observed no long-term potentiation upon high-frequency stimulation in the motor cortex of Cck−/− mice, indicating a possible association between motor learning deficiency and neuroplasticity in the motor cortex. In vivo calcium imaging demonstrated that the deficiency of CCK signaling disrupted the refinement of population neuronal activity in the motor cortex during motor skill training. Anatomical tracing revealed direct projections from CCK-expressing neurons in the rhinal cortex to the motor cortex. Inactivation of the CCK neurons in the rhinal cortex that project to the motor cortex bilaterally using chemogenetic methods significantly suppressed motor learning, and intraperitoneal application of CCK4, a tetrapeptide CCK agonist, rescued the motor learning deficits of Cck−/− mice. In summary, our results suggest that CCK, which could be provided from the rhinal cortex, may surpport motor skill learning by modulating neuroplasticity in the motor cortex.

    1. Neuroscience
    Ivan Tomić, Paul M Bays
    Research Article

    Probing memory of a complex visual image within a few hundred milliseconds after its disappearance reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second. Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or ‘iconic’ memory (IM), while the latter relies on capacity-limited but comparatively stable visual working memory (VWM). While iconic decay and VWM capacity have been extensively studied independently, currently no single framework quantitatively accounts for the dynamics of memory fidelity over these time scales. Here, we extend a stationary neural population model of VWM with a temporal dimension, incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory, and a slower accumulation of internal error that causes memorized features to randomly drift over time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall by lifting the effective limit on VWM signal strength imposed when multiple items compete for representation, allowing memory for the cued item to be supplemented with information from the decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions while excluding alternative model architectures. A key conclusion is that differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a single resource-limited WM store.