Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling

  1. Catherine M Sweeney-Reed  Is a corresponding author
  2. Tino Zaehle
  3. Jürgen Voges
  4. Friedhelm C Schmitt
  5. Lars Buentjen
  6. Klaus Kopitzki
  7. Hermann Hinrichs
  8. Hans-Jochen Heinze
  9. Michael D Rugg
  10. Robert T Knight
  11. Alan Richardson-Klavehn
  1. Otto von Guericke University, Germany
  2. University of Texas at Dallas, United States
  3. University of California, Berkeley, United States

Abstract

Previously we reported electrophysiological evidence for a role for the anterior thalamic nucleus (ATN) in human memory formation (Sweeney-Reed et al. 2014). Theta-gamma cross-frequency coupling (CFC) predicted successful memory formation, with the involvement of gamma oscillations suggesting memory-relevant local processing in the ATN. The importance of the theta frequency range in memory processing is well-established, and phase alignment of oscillations is considered to be necessary for synaptic plasticity. We hypothesized that theta phase alignment in the ATN would be necessary for memory encoding. Further analysis of the electrophysiological data reveal that phase alignment in the theta rhythm was greater during successful compared with unsuccessful encoding, and that this alignment was correlated with the CFC. These findings support an active processing role for the ATN during memory formation.

Article and author information

Author details

  1. Catherine M Sweeney-Reed

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    For correspondence
    catherine.sweeney-reed@med.ovgu.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Tino Zaehle

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jürgen Voges

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Friedhelm C Schmitt

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Lars Buentjen

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Klaus Kopitzki

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Hermann Hinrichs

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Hans-Jochen Heinze

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael D Rugg

    Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Robert T Knight

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Alan Richardson-Klavehn

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Howard Eichenbaum, Boston University, United States

Ethics

Human subjects: The measurements were approved by the Ethics Commission of the Medical Faculty of the Otto-von-Guericke University, Magdeburg (application number 0308), and all participants gave written informed consent in accordance with the Helsinki Declaration of 1975, as revised in 2000 and2008. Consent to participate in our study, as well as for publication of results in an anonymized format,was obtained by the neurosurgeon at the same time as consent was obtained for the surgicalprocedure.

Version history

  1. Received: March 19, 2015
  2. Accepted: May 19, 2015
  3. Accepted Manuscript published: May 20, 2015 (version 1)
  4. Version of Record published: June 8, 2015 (version 2)

Copyright

© 2015, Sweeney-Reed et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,569
    views
  • 367
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Catherine M Sweeney-Reed
  2. Tino Zaehle
  3. Jürgen Voges
  4. Friedhelm C Schmitt
  5. Lars Buentjen
  6. Klaus Kopitzki
  7. Hermann Hinrichs
  8. Hans-Jochen Heinze
  9. Michael D Rugg
  10. Robert T Knight
  11. Alan Richardson-Klavehn
(2015)
Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling
eLife 4:e07578.
https://doi.org/10.7554/eLife.07578

Share this article

https://doi.org/10.7554/eLife.07578

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.