A molecular mechanism underlying gustatory memory trace for an association in the insular cortex

  1. Chinnakkaruppan Adaikkan
  2. Kobi Rosenblum  Is a corresponding author
  1. University of Haifa, Israel

Abstract

Events separated in time are associatively learned in trace conditioning, recruiting more neuronal circuits and molecular mechanisms than in delay conditioning. However, it remains unknown whether a given sensory memory trace is being maintained as a unitary item to associate. Here, we used conditioned taste aversion learning in the rat model, wherein animals associate a novel taste with visceral nausea, and demonstrate that there are two parallel memory traces of a novel taste: a short-duration robust trace, lasting approximately 3h, and a parallel long-duration weak one, lasting up to 8h, and dependent on the strong trace for its formation. Moreover, only the early robust trace is maintained by a NMDAR-dependent CaMKII- AMPAR pathway in the insular cortex. These findings suggest that a memory trace undergoes rapid modifications, and that the mechanisms underlying trace associative learning differ when items in the memory are experienced at different time points.

Article and author information

Author details

  1. Chinnakkaruppan Adaikkan

    Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Kobi Rosenblum

    Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
    For correspondence
    kobir@psy.haifa.ac.il
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Christian Rosenmund, Charité, Universitätsmedizin Berlin, Germany

Ethics

Animal experimentation: The procedures were approved by the University of Haifa ethics committee for animal research and were in accordance with the NIH guidelines for the ethical treatment of animals. All of the animals were handled according to the Haifa University animal care and use committee. All surgery was preformed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: March 19, 2015
  2. Accepted: October 8, 2015
  3. Accepted Manuscript published: October 9, 2015 (version 1)
  4. Version of Record published: December 11, 2015 (version 2)

Copyright

© 2015, Adaikkan & Rosenblum

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,992
    views
  • 491
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chinnakkaruppan Adaikkan
  2. Kobi Rosenblum
(2015)
A molecular mechanism underlying gustatory memory trace for an association in the insular cortex
eLife 4:e07582.
https://doi.org/10.7554/eLife.07582

Share this article

https://doi.org/10.7554/eLife.07582

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.