Longitudinal analysis of Plasmodium sporozoite motility in the dermis reveals component of blood vessel recognition

  1. Christine S Hopp
  2. Kevin Chiou
  3. Daniel RT Ragheb
  4. Ahmed Salman
  5. Shahid M Khan
  6. Andrea J Liu
  7. Photini Sinnis  Is a corresponding author
  1. Johns Hopkins Bloomberg School of Public Health, United States
  2. University of Pennsylvania, United States
  3. Leiden University Medical Center, Netherlands

Abstract

Malaria infection starts with injection of Plasmodium sporozoites by an Anopheles mosquito into the skin of the mammalian host. How sporozoites locate and enter a blood vessel is a critical, but poorly understood process. Here, we examine sporozoite motility and their interaction with dermal blood vessels, using intravital microscopy in mice. Our data suggest that sporozoites exhibit two types of motility: In regions far from blood vessels, they exhibit ′avascular motility′, defined by high speed and less confinement, while in the vicinity of blood vessels their motility is more constrained. We find that curvature of sporozoite tracks engaging with vasculature optimizes contact with dermal capillaries. Imaging of sporozoites with mutations in key adhesive proteins highlight the importance of the sporozoite's gliding speed and its ability to modulate adhesive properties for successful exit from the inoculation site.

Article and author information

Author details

  1. Christine S Hopp

    Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kevin Chiou

    Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel RT Ragheb

    Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ahmed Salman

    Department of Parasitology, Leiden Malaria Research Group, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Shahid M Khan

    Department of Parasitology, Leiden Malaria Research Group, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrea J Liu

    Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Photini Sinnis

    Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    For correspondence
    psinnis@jhsph.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Urszula Krzych, Walter Reed Army Institute of Research, United States

Ethics

Animal experimentation: All animal work was conducted in accordance with the recommendations by the Johns Hopkins University Animal Care and Use Committee (IACUC), under the IACUC-approved protocol #M011H467.

Version history

  1. Received: March 29, 2015
  2. Accepted: August 12, 2015
  3. Accepted Manuscript published: August 13, 2015 (version 1)
  4. Version of Record published: October 6, 2015 (version 2)

Copyright

© 2015, Hopp et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,345
    views
  • 562
    downloads
  • 98
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christine S Hopp
  2. Kevin Chiou
  3. Daniel RT Ragheb
  4. Ahmed Salman
  5. Shahid M Khan
  6. Andrea J Liu
  7. Photini Sinnis
(2015)
Longitudinal analysis of Plasmodium sporozoite motility in the dermis reveals component of blood vessel recognition
eLife 4:e07789.
https://doi.org/10.7554/eLife.07789

Share this article

https://doi.org/10.7554/eLife.07789

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Edited by Prabhat Jha et al.
    Collection Updated

    eLife has published papers on many tropical diseases, including malaria, Ebola, leishmaniases, Dengue and African sleeping sickness.

    1. Medicine
    2. Microbiology and Infectious Disease
    Yi-Shin Chang, Kai Huang ... David L Perkins
    Research Article

    Background:

    End-stage renal disease (ESRD) patients experience immune compromise characterized by complex alterations of both innate and adaptive immunity, and results in higher susceptibility to infection and lower response to vaccination. This immune compromise, coupled with greater risk of exposure to infectious disease at hemodialysis (HD) centers, underscores the need for examination of the immune response to the COVID-19 mRNA-based vaccines.

    Methods:

    The immune response to the COVID-19 BNT162b2 mRNA vaccine was assessed in 20 HD patients and cohort-matched controls. RNA sequencing of peripheral blood mononuclear cells was performed longitudinally before and after each vaccination dose for a total of six time points per subject. Anti-spike antibody levels were quantified prior to the first vaccination dose (V1D0) and 7 d after the second dose (V2D7) using anti-spike IgG titers and antibody neutralization assays. Anti-spike IgG titers were additionally quantified 6 mo after initial vaccination. Clinical history and lab values in HD patients were obtained to identify predictors of vaccination response.

    Results:

    Transcriptomic analyses demonstrated differing time courses of immune responses, with prolonged myeloid cell activity in HD at 1 wk after the first vaccination dose. HD also demonstrated decreased metabolic activity and decreased antigen presentation compared to controls after the second vaccination dose. Anti-spike IgG titers and neutralizing function were substantially elevated in both controls and HD at V2D7, with a small but significant reduction in titers in HD groups (p<0.05). Anti-spike IgG remained elevated above baseline at 6 mo in both subject groups. Anti-spike IgG titers at V2D7 were highly predictive of 6-month titer levels. Transcriptomic biomarkers after the second vaccination dose and clinical biomarkers including ferritin levels were found to be predictive of antibody development.

    Conclusions:

    Overall, we demonstrate differing time courses of immune responses to the BTN162b2 mRNA COVID-19 vaccination in maintenance HD subjects comparable to healthy controls and identify transcriptomic and clinical predictors of anti-spike IgG titers in HD. Analyzing vaccination as an in vivo perturbation, our results warrant further characterization of the immune dysregulation of ESRD.

    Funding:

    F30HD102093, F30HL151182, T32HL144909, R01HL138628. This research has been funded by the University of Illinois at Chicago Center for Clinical and Translational Science (CCTS) award UL1TR002003.