Thalamic reticular nucleus induces fast and local modulation of arousal state

  1. Laura D Lewis
  2. Jakob Voigts
  3. Francisco J Flores
  4. Lukas I Schmitt
  5. Matthew A Wilson
  6. Michael M Halassa
  7. Emery N Brown  Is a corresponding author
  1. Harvard University, United States
  2. Massachusetts Institute of Technology, United States
  3. New York University, United States

Abstract

During low arousal states such as drowsiness and sleep, cortical neurons exhibit rhythmic slow wave activity associated with periods of neuronal silence. Slow waves are locally regulated, and local slow wave dynamics are important for memory, cognition, and behaviour. While several brainstem structures for controlling global sleep states have now been well characterized, a mechanism underlying fast and local modulation of cortical slow waves has not been identified. Here, using optogenetics and whole cortex electrophysiology, we show that local tonic activation of thalamic reticular nucleus (TRN) rapidly induces slow wave activity in a spatially restricted region of cortex. These slow waves resemble those seen in sleep, as cortical units undergo periods of silence phase-locked to the slow wave. Furthermore, animals exhibit behavioural changes consistent with a decrease in arousal state during TRN stimulation. We conclude that TRN can induce rapid modulation of local cortical state.

Article and author information

Author details

  1. Laura D Lewis

    Society of Fellows, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Jakob Voigts

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Francisco J Flores

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Lukas I Schmitt

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    No competing interests declared.
  5. Matthew A Wilson

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  6. Michael M Halassa

    Neuroscience Institute, New York University, New York, United States
    Competing interests
    No competing interests declared.
  7. Emery N Brown

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    enb@neurostat.mit.edu
    Competing interests
    Emery N Brown, Reviewing editor, eLife.

Reviewing Editor

  1. Michael J Frank, Brown University, United States

Ethics

Animal experimentation: All experimental procedures were approved by the MIT Committee on Animal Care (protocol number #0514-038-17).

Version history

  1. Received: May 15, 2015
  2. Accepted: September 24, 2015
  3. Accepted Manuscript published: October 13, 2015 (version 1)
  4. Version of Record published: December 9, 2015 (version 2)

Copyright

© 2015, Lewis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,480
    views
  • 2,228
    downloads
  • 144
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura D Lewis
  2. Jakob Voigts
  3. Francisco J Flores
  4. Lukas I Schmitt
  5. Matthew A Wilson
  6. Michael M Halassa
  7. Emery N Brown
(2015)
Thalamic reticular nucleus induces fast and local modulation of arousal state
eLife 4:e08760.
https://doi.org/10.7554/eLife.08760

Share this article

https://doi.org/10.7554/eLife.08760

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.