Abstract

Most perceptual decisions require comparisons between current input and an internal template. Classic studies propose that templates are encoded in sustained activity of sensory neurons. However, stimulus encoding is itself dynamic, tracing a complex trajectory through activity space. Which part of this trajectory is pre-activated to reflect the template? Here we recorded magneto- and electroencephalography during a visual target-detection task, and used pattern analyses to decode template, stimulus, and decision-variable representation. Our findings ran counter to the dominant model of sustained pre-activation. Instead, template information emerged transiently around stimulus onset and quickly subsided. Cross-generalization between stimulus and template coding, indicating a shared neural representation, occurred only briefly. Our results are compatible with the proposal that template representation relies on a matched filter, transforming input into task-appropriate output. This proposal was consistent with a signed difference response at the perceptual decision stage, which can be explained by a simple neural model.

Article and author information

Author details

  1. Nicholas Edward Myers

    Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
    For correspondence
    nicholas.myers@ohba.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Gustavo Rohenkohl

    Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Valentin Wyart

    Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark W Woolrich

    Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Christina Nobre

    Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Mark G Stokes

    Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Michael J Frank, Brown University, United States

Ethics

Human subjects: Ethical approval for methods and procedures was obtained from the Central University Research Ethics Committee of the University of Oxford. All participants provided written, informed consent.

Version history

  1. Received: May 28, 2015
  2. Accepted: December 13, 2015
  3. Accepted Manuscript published: December 14, 2015 (version 1)
  4. Version of Record published: February 2, 2016 (version 2)

Copyright

© 2015, Myers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,246
    views
  • 787
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicholas Edward Myers
  2. Gustavo Rohenkohl
  3. Valentin Wyart
  4. Mark W Woolrich
  5. Anna Christina Nobre
  6. Mark G Stokes
(2015)
Testing sensory evidence against mnemonic templates
eLife 4:e09000.
https://doi.org/10.7554/eLife.09000

Share this article

https://doi.org/10.7554/eLife.09000

Further reading

    1. Neuroscience
    Aviv Ratzon, Dori Derdikman, Omri Barak
    Research Article

    Recent studies show that, even in constant environments, the tuning of single neurons changes over time in a variety of brain regions. This representational drift has been suggested to be a consequence of continuous learning under noise, but its properties are still not fully understood. To investigate the underlying mechanism, we trained an artificial network on a simplified navigational task. The network quickly reached a state of high performance, and many units exhibited spatial tuning. We then continued training the network and noticed that the activity became sparser with time. Initial learning was orders of magnitude faster than ensuing sparsification. This sparsification is consistent with recent results in machine learning, in which networks slowly move within their solution space until they reach a flat area of the loss function. We analyzed four datasets from different labs, all demonstrating that CA1 neurons become sparser and more spatially informative with exposure to the same environment. We conclude that learning is divided into three overlapping phases: (i) Fast familiarity with the environment; (ii) slow implicit regularization; and (iii) a steady state of null drift. The variability in drift dynamics opens the possibility of inferring learning algorithms from observations of drift statistics.

    1. Neuroscience
    Yu-Feng Xie, Jane Yang ... Steven A Prescott
    Research Article

    Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy – achieving similar function using different components – and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.