NG2 glia are required for vessel network formation during embryonic development

  1. Shilpi Minocha
  2. Delphine Valloton
  3. Isabelle Brunet
  4. Anne Eichmann
  5. Jean-Pierre Hornung
  6. Cecile Lebrand  Is a corresponding author
  1. University of Lausanne, Switzerland
  2. Institut national de la santé et de la recherche médicale, Collège de France, France

Abstract

The NG2+ glia, also known as polydendrocytes or oligodendrocyte precursor cells, represent a new entity among glial cell populations in the central nervous system. However, the complete repertoire of their roles is not yet identified. The embryonic NG2+ glia originate from the Nkx2.1+ progenitors of the ventral telencephalon. Our analysis unravels that, beginning from E12.5 until E16.5, the NG2+ glia populate the entire dorsal telencephalon. Interestingly, their appearance temporally coincides with the establishment of blood vessel network in the embryonic brain. NG2+ glia are closely apposed to developing cerebral vessels by being either positioned at the sprouting tip cells or tethered along the vessel walls. Absence of NG2+ glia drastically affects the vascular development leading to severe reduction of ramifications and connections by E18.5. By revealing a novel and fundamental role for NG2+ glia, our study brings new perspectives to mechanisms underlying proper vessels network formation in embryonic brains.

Article and author information

Author details

  1. Shilpi Minocha

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Delphine Valloton

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Isabelle Brunet

    Institut national de la santé et de la recherche médicale, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Anne Eichmann

    Institut national de la santé et de la recherche médicale, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Jean-Pierre Hornung

    Department of Fundamental Neurosciences, University of Lausanne, Lausnne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Cecile Lebrand

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    For correspondence
    cecile.lebrand@unil.ch
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Joseph G Gleeson, Howard Hughes Medical Institute, The Rockefeller University, United States

Ethics

Animal experimentation: All studies on mice of either sex have been performed in compliance with the national and international guidelines and with the approval of the Federation of Swiss cantonal Veterinary Officers (2164).

Version history

  1. Received: June 1, 2015
  2. Accepted: November 29, 2015
  3. Accepted Manuscript published: December 10, 2015 (version 1)
  4. Accepted Manuscript updated: January 5, 2016 (version 2)
  5. Version of Record published: February 11, 2016 (version 3)

Copyright

© 2015, Minocha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,335
    views
  • 628
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shilpi Minocha
  2. Delphine Valloton
  3. Isabelle Brunet
  4. Anne Eichmann
  5. Jean-Pierre Hornung
  6. Cecile Lebrand
(2015)
NG2 glia are required for vessel network formation during embryonic development
eLife 4:e09102.
https://doi.org/10.7554/eLife.09102

Share this article

https://doi.org/10.7554/eLife.09102

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.