Large scale determination of previously unsolved protein structures using evolutionary information

  1. Sergey Ovchinnikov
  2. Lisa Kinch
  3. Hahnbeom Park
  4. Yuxing Liao
  5. Jimin Pei
  6. David E Kim
  7. Hetunandan Kamisetty
  8. Nick V Grishin
  9. David Baker  Is a corresponding author
  1. University of Washington, United States
  2. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, United States
  3. University of Texas Southwestern Medical Center, United States
  4. Facebook Inc., United States

Abstract

The prediction of the structures of proteins without detectablesequence similarity to any protein of known structure remains anoutstanding scientific challenge. Here we describe de novo blindstructure predictions of unprecedented accuracy for two proteins in large families made in the recent CASP11 blind test of protein structure prediction methods by incorporating residue-residue co-evolution information in the Rosetta structure prediction program. We then use the method to generate structure models for 58 of the 121 large protein families in prokaryotes for which three dimensionalstructures are not available. These models, which are posted online for public access, provide structural information for the over 400,000 proteins belonging to the 58 families and suggest hypotheses about mechanism for the subset for which the function is known, and hypotheses about function for the remainder.

Article and author information

Author details

  1. Sergey Ovchinnikov

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lisa Kinch

    Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hahnbeom Park

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuxing Liao

    Department of Biophysics, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jimin Pei

    Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. David E Kim

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hetunandan Kamisetty

    Facebook Inc., Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Nick V Grishin

    Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. David Baker

    Department of Biochemistry, University of Washington, Seattle, United States
    For correspondence
    dabaker@uw.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Yibing Shan, DE Shaw Research, United States

Version history

  1. Received: June 6, 2015
  2. Accepted: August 30, 2015
  3. Accepted Manuscript published: September 3, 2015 (version 1)
  4. Version of Record published: October 21, 2015 (version 2)

Copyright

© 2015, Ovchinnikov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,178
    views
  • 2,068
    downloads
  • 224
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sergey Ovchinnikov
  2. Lisa Kinch
  3. Hahnbeom Park
  4. Yuxing Liao
  5. Jimin Pei
  6. David E Kim
  7. Hetunandan Kamisetty
  8. Nick V Grishin
  9. David Baker
(2015)
Large scale determination of previously unsolved protein structures using evolutionary information
eLife 4:e09248.
https://doi.org/10.7554/eLife.09248

Share this article

https://doi.org/10.7554/eLife.09248

Further reading

    1. Structural Biology and Molecular Biophysics
    Christian Galicia, Giambattista Guaitoli ... Wim Versées
    Research Article

    Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson’s disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.