Coverage and system efficiencies of insecticide-treated nets in Africa from 2000 to 2017

  1. Samir Bhatt  Is a corresponding author
  2. Daniel J Weiss
  3. Bonnie Mappin
  4. Ursula Dalrymple
  5. Ewan Cameron
  6. Donal Bisanzio
  7. David L Smith
  8. Catherine L Moyes
  9. Andrew J Tatem
  10. Michael Lynch
  11. Cristin A Fergus
  12. Joshua Yukich
  13. Adam Bennett
  14. Thomas P Eisele
  15. Jan Kolaczinski
  16. Richard E Cibulskis
  17. Simon I Hay
  18. Peter W Gething
  1. University of Oxford, United Kingdom
  2. National Institutes of Health, United States
  3. World Health Organization, Switzerland
  4. Tulane University School of Public Health and Tropical Medicine, United States
  5. University of California, San Francisco, United States
  6. The Global Fund to Fight AIDS, Tuberculosis and Malaria, Switzerland

Abstract

Insecticide-treated nets (ITNs) for malaria control are widespread but coverage remains inadequate. We developed a Bayesian model using data from 102 national surveys, triangulated against delivery data and distribution reports, to generate year-by-year estimates of four ITN coverage indicators. We explored the impact of two potential 'inefficiencies': uneven net distribution among households and rapid rates of net loss from households. We estimated that, in 2013, 21% (17%-26%) of ITNs were over-allocated and this has worsened over time as overall net provision has increased. We estimated that rates of ITN loss from households are more rapid than previously thought, with 50% lost after 23 (20-28) months. We predict that the current estimate of 920 million additional ITNs required to achieve universal coverage would in reality yield a lower level of coverage (77% population access). By improving efficiency, however, the 920 million ITNs could yield population access as high as 95%.

Article and author information

Author details

  1. Samir Bhatt

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    For correspondence
    bhattsamir@gmail.com
    Competing interests
    No competing interests declared.
  2. Daniel J Weiss

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Bonnie Mappin

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Ursula Dalrymple

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Ewan Cameron

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Donal Bisanzio

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  7. David L Smith

    Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  8. Catherine L Moyes

    Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Andrew J Tatem

    Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  10. Michael Lynch

    Global Malaria Programme, World Health Organization, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  11. Cristin A Fergus

    Global Malaria Programme, World Health Organization, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  12. Joshua Yukich

    Center for Applied Malaria Research and Evaluation, Department of Global Health Systems and Development, Tulane University School of Public Health and Tropical Medicine, New Orleans, United States
    Competing interests
    No competing interests declared.
  13. Adam Bennett

    Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  14. Thomas P Eisele

    Center for Applied Malaria Research and Evaluation, Department of Global Health Systems and Development, Tulane University School of Public Health and Tropical Medicine, New Orleans, United States
    Competing interests
    No competing interests declared.
  15. Jan Kolaczinski

    Strategy, Investment and Impact Division, The Global Fund to Fight AIDS, Tuberculosis and Malaria, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  16. Richard E Cibulskis

    Global Malaria Programme, World Health Organization, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  17. Simon I Hay

    Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    Simon I Hay, Reviewing editor, eLife.
  18. Peter W Gething

    Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Catherine Kyobutungi, Africa Population Health Research Center, Kenya

Version history

  1. Received: June 25, 2015
  2. Accepted: November 26, 2015
  3. Accepted Manuscript published: December 29, 2015 (version 1)
  4. Version of Record published: February 8, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,184
    views
  • 663
    downloads
  • 126
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samir Bhatt
  2. Daniel J Weiss
  3. Bonnie Mappin
  4. Ursula Dalrymple
  5. Ewan Cameron
  6. Donal Bisanzio
  7. David L Smith
  8. Catherine L Moyes
  9. Andrew J Tatem
  10. Michael Lynch
  11. Cristin A Fergus
  12. Joshua Yukich
  13. Adam Bennett
  14. Thomas P Eisele
  15. Jan Kolaczinski
  16. Richard E Cibulskis
  17. Simon I Hay
  18. Peter W Gething
(2015)
Coverage and system efficiencies of insecticide-treated nets in Africa from 2000 to 2017
eLife 4:e09672.
https://doi.org/10.7554/eLife.09672

Share this article

https://doi.org/10.7554/eLife.09672

Further reading

    1. Cancer Biology
    2. Epidemiology and Global Health
    Lijun Bian, Zhimin Ma ... Guangfu Jin
    Research Article

    Background:

    Age is the most important risk factor for cancer, but aging rates are heterogeneous across individuals. We explored a new measure of aging-Phenotypic Age (PhenoAge)-in the risk prediction of site-specific and overall cancer.

    Methods:

    Using Cox regression models, we examined the association of Phenotypic Age Acceleration (PhenoAgeAccel) with cancer incidence by genetic risk group among 374,463 participants from the UK Biobank. We generated PhenoAge using chronological age and nine biomarkers, PhenoAgeAccel after subtracting the effect of chronological age by regression residual, and an incidence-weighted overall cancer polygenic risk score (CPRS) based on 20 cancer site-specific polygenic risk scores (PRSs).

    Results:

    Compared with biologically younger participants, those older had a significantly higher risk of overall cancer, with hazard ratios (HRs) of 1.22 (95% confidence interval, 1.18–1.27) in men, and 1.26 (1.22–1.31) in women, respectively. A joint effect of genetic risk and PhenoAgeAccel was observed on overall cancer risk, with HRs of 2.29 (2.10–2.51) for men and 1.94 (1.78–2.11) for women with high genetic risk and older PhenoAge compared with those with low genetic risk and younger PhenoAge. PhenoAgeAccel was negatively associated with the number of healthy lifestyle factors (Beta = –1.01 in men, p<0.001; Beta = –0.98 in women, p<0.001).

    Conclusions:

    Within and across genetic risk groups, older PhenoAge was consistently related to an increased risk of incident cancer with adjustment for chronological age and the aging process could be retarded by adherence to a healthy lifestyle.

    Funding:

    This work was supported by the National Natural Science Foundation of China (82230110, 82125033, 82388102 to GJ; 82273714 to MZ); and the Excellent Youth Foundation of Jiangsu Province (BK20220100 to MZ).

    1. Epidemiology and Global Health
    Zhanwei Du, Lin Wang ... Lauren A Meyers
    Short Report

    Paxlovid, a SARS-CoV-2 antiviral, not only prevents severe illness but also curtails viral shedding, lowering transmission risks from treated patients. By fitting a mathematical model of within-host Omicron viral dynamics to electronic health records data from 208 hospitalized patients in Hong Kong, we estimate that Paxlovid can inhibit over 90% of viral replication. However, its effectiveness critically depends on the timing of treatment. If treatment is initiated three days after symptoms first appear, we estimate a 17% chance of a post-treatment viral rebound and a 12% (95% CI: 0%-16%) reduction in overall infectiousness for non-rebound cases. Earlier treatment significantly elevates the risk of rebound without further reducing infectiousness, whereas starting beyond five days reduces its efficacy in curbing peak viral shedding. Among the 104 patients who received Paxlovid, 62% began treatment within an optimal three-to-five-day day window after symptoms appeared. Our findings indicate that broader global access to Paxlovid, coupled with appropriately timed treatment, can mitigate the severity and transmission of SARS-Cov-2.