Internal models for interpreting neural population activity during sensorimotor control

  1. Matthew D Golub
  2. Byron M Yu
  3. Steven M Chase  Is a corresponding author
  1. Carnegie Mellon University, United States

Abstract

To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects' internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output.

Article and author information

Author details

  1. Matthew D Golub

    Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Byron M Yu

    Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Steven M Chase

    Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States
    For correspondence
    schase@cmu.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Timothy Behrens, Oxford University, United Kingdom

Ethics

Animal experimentation: All animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Pittsburgh (protocol 0808279).

Version history

  1. Received: July 10, 2015
  2. Accepted: November 25, 2015
  3. Accepted Manuscript published: December 8, 2015 (version 1)
  4. Version of Record published: February 16, 2016 (version 2)

Copyright

© 2015, Golub et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,052
    views
  • 840
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew D Golub
  2. Byron M Yu
  3. Steven M Chase
(2015)
Internal models for interpreting neural population activity during sensorimotor control
eLife 4:e10015.
https://doi.org/10.7554/eLife.10015

Share this article

https://doi.org/10.7554/eLife.10015

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.