Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse

  1. Erica Tagliatti
  2. Manuela Fadda
  3. Antonio Falace
  4. Fabio Benfenati
  5. Anna Fassio  Is a corresponding author
  1. Fondazione Istituto Italiano di Tecnologia, Italy
  2. University of Genova, Italy
  3. Institut national de la santé et de la recherche médicale, Institut de Neurobiologie de la Méditerranée, France

Abstract

Recycling of synaptic vesicles (SVs) is a fundamental step in the process of neurotransmission. Endocytosed SV can travel directly into the recycling pool or recycle through endosomes but little is known about the molecular actors regulating the switch between these SV recycling routes. ADP ribosylation factor 6 (Arf6) is a small GTPase known to participate in constitutive trafficking between plasma membrane and early endosomes. Here we have morphologically and functionally investigated Arf6-silenced hippocampal synapses and found an activity dependent accumulation of synaptic endosome-like organelles and increased release-competent docked SVs. These features were phenocopied by pharmacological blockage of Arf6 activation. The data reveal an unexpected role for this small GTPase in reducing the size of the readily releasable pool of SVs and in channeling retrieved SVs toward direct recycling rather than endosomal sorting. We propose that Arf6 acts at the presynapse to define the fate of an endocytosed SV.

Article and author information

Author details

  1. Erica Tagliatti

    Center of SynapticNeuroscience, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Manuela Fadda

    Department of Experimental Medicine, University of Genova, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Antonio Falace

    Institut national de la santé et de la recherche médicale, Institut de Neurobiologie de la Méditerranée, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabio Benfenati

    Center of SynapticNeuroscience, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Fassio

    Center of SynapticNeuroscience, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
    For correspondence
    afassio@unige.it
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Christian Rosenmund, Charité, Universitätsmedizin Berlin, Germany

Ethics

Animal experimentation: All experiments were carried out in accordance with the guidelines established by the European Communities Council (Directive 2010/63/EU of March 4th 2014) and were approved by the Italian Ministry of Health.

Version history

  1. Received: July 15, 2015
  2. Accepted: January 4, 2016
  3. Accepted Manuscript published: January 5, 2016 (version 1)
  4. Version of Record published: February 10, 2016 (version 2)

Copyright

© 2016, Tagliatti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,618
    views
  • 618
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erica Tagliatti
  2. Manuela Fadda
  3. Antonio Falace
  4. Fabio Benfenati
  5. Anna Fassio
(2016)
Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse
eLife 5:e10116.
https://doi.org/10.7554/eLife.10116

Share this article

https://doi.org/10.7554/eLife.10116

Further reading

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here we addressed how murine adult hippocampal NSC fate is regulated and describe how Scaffold Attachment Factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor Nuclear Factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.

    1. Neuroscience
    Paula Banca, Maria Herrojo Ruiz ... Trevor W Robbins
    Research Article

    This study investigates the goal/habit imbalance theory of compulsion in obsessive-compulsive disorder (OCD), which postulates enhanced habit formation, increased automaticity, and impaired goal/habit arbitration. It directly tests these hypotheses using newly developed behavioral tasks. First, OCD patients and healthy participants were trained daily for a month using a smartphone app to perform chunked action sequences. Despite similar procedural learning and attainment of habitual performance (measured by an objective automaticity criterion) by both groups, OCD patients self-reported higher subjective habitual tendencies via a recently developed questionnaire. Subsequently, in a re-evaluation task assessing choices between established automatic and novel goal-directed actions, both groups were sensitive to re-evaluation based on monetary feedback. However, OCD patients, especially those with higher compulsive symptoms and habitual tendencies, showed a clear preference for trained/habitual sequences when choices were based on physical effort, possibly due to their higher attributed intrinsic value. These patients also used the habit-training app more extensively and reported symptom relief post-study. The tendency to attribute higher intrinsic value to familiar actions may be a potential mechanism leading to compulsions and an important addition to the goal/habit imbalance hypothesis in OCD. We also highlight the potential of smartphone app training as a habit reversal therapeutic tool.