The evolution of distributed sensing and collective computation in animal populations

  1. Andrew M Hein  Is a corresponding author
  2. Sara Brin Rosenthal
  3. George I Hagstrom
  4. Andrew Berdahl
  5. Colin J Torney
  6. Iain D Couzin
  1. Princeton University, United States
  2. Santa Fe Institute, United States
  3. University of Exeter, Cornwall Campus, United Kingdom
  4. Max Planck Institute for Ornithology, Germany

Abstract

Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary forces that cause such collective responses to evolve are poorly understood. Here we develop analytical methods and evolutionary simulations based on experimental data from schooling fish. We use these methods to investigate how populations evolve within unpredictable, time-varying resource environments. We show that populations evolve toward a distinctive regime in behavioral phenotype space, where small responses of individuals to local environmental cues cause spontaneous changes in the collective state of groups. These changes resemble phase transitions in physical systems. Through these transitions, individuals evolve the emergent capacity to sense and respond to resource gradients (i.e. individuals perceive gradients via social interactions, rather than sensing gradients directly), and to allocate themselves among distinct, distant resource patches. Our results yield new insight into how natural selection, acting on selfish individuals, results in the highly effective collective responses evident in nature.

Article and author information

Author details

  1. Andrew M Hein

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    For correspondence
    ahein@princeton.edu
    Competing interests
    No competing interests declared.
  2. Sara Brin Rosenthal

    Department of Physics, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  3. George I Hagstrom

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  4. Andrew Berdahl

    Santa Fe Institute, Santa Fe, United States
    Competing interests
    No competing interests declared.
  5. Colin J Torney

    Centre for Mathematics and the Environment, University of Exeter, Cornwall Campus, Penryn, United Kingdom
    Competing interests
    No competing interests declared.
  6. Iain D Couzin

    Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany
    Competing interests
    Iain D Couzin, Reviewing editor, eLife.

Reviewing Editor

  1. Michael Doebeli, University of British Columbia, Canada

Version history

  1. Received: August 20, 2015
  2. Accepted: November 1, 2015
  3. Accepted Manuscript published: December 10, 2015 (version 1)
  4. Accepted Manuscript updated: December 17, 2015 (version 2)
  5. Version of Record published: February 3, 2016 (version 3)

Copyright

© 2015, Hein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,592
    views
  • 768
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew M Hein
  2. Sara Brin Rosenthal
  3. George I Hagstrom
  4. Andrew Berdahl
  5. Colin J Torney
  6. Iain D Couzin
(2015)
The evolution of distributed sensing and collective computation in animal populations
eLife 4:e10955.
https://doi.org/10.7554/eLife.10955

Share this article

https://doi.org/10.7554/eLife.10955

Further reading

    1. Ecology
    2. Evolutionary Biology
    Théo Constant, F Stephen Dobson ... Sylvain Giroud
    Research Article

    Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the ‘life-history’ hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.

    1. Ecology
    Ari Grele, Tara J Massad ... Lora A Richards
    Research Article

    Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus Piper on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecific Piper diversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecific Piper richness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.