Odor-identity dependent motor programs underlie behavioral responses to odors

  1. Seung-Hye Jung
  2. Catherine Hueston
  3. Vikas Bhandawat  Is a corresponding author
  1. Duke University, United States

Abstract

All animals use olfactory information to perform tasks essential to their survival. Odors typically activate multiple olfactory receptor neuron (ORN) classes and are therefore represented by the patterns of active ORNs. How the patterns of active ORN classes are decoded to drive behavior is under intense investigation. In this study, using Drosophila as a model system, we investigate the logic by which odors modulate locomotion. We designed a novel behavioral arena in which we could examine a fly's locomotion under precisely controlled stimulus condition. In this arena, in response to similarly attractive odors, flies modulate their locomotion differently implying that odors have a more diverse effect on locomotion than was anticipated. Three features underlie odor-guided locomotion: First, in response to odors, flies modulate a surprisingly large number of motor parameters. Second, similarly attractive odors elicit changes in different motor programs. Third, different ORN classes modulate different subset of motor parameters.

Article and author information

Author details

  1. Seung-Hye Jung

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Catherine Hueston

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Vikas Bhandawat

    Department of Biology, Duke University, Durham, United States
    For correspondence
    vb37@duke.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Version history

  1. Received: August 24, 2015
  2. Accepted: October 5, 2015
  3. Accepted Manuscript published: October 6, 2015 (version 1)
  4. Version of Record published: December 29, 2015 (version 2)

Copyright

© 2015, Jung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,995
    views
  • 696
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seung-Hye Jung
  2. Catherine Hueston
  3. Vikas Bhandawat
(2015)
Odor-identity dependent motor programs underlie behavioral responses to odors
eLife 4:e11092.
https://doi.org/10.7554/eLife.11092

Share this article

https://doi.org/10.7554/eLife.11092

Further reading

    1. Neuroscience
    Mischa Vance Bandet, Ian Robert Winship
    Research Article

    Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within ‘remapped’ forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.

    1. Neuroscience
    Renbo Mao, Jianjun Yu ... Yi Rao
    Tools and Resources

    Dissection of neural circuitry underlying behaviors is a central theme in neurobiology. We have previously proposed the concept of chemoconnectome (CCT) to cover the entire chemical transmission between neurons and target cells in an organism and created tools for studying it (CCTomics) by targeting all genes related to the CCT in Drosophila. Here we have created lines targeting the CCT in a conditional manner after modifying GFP RNA interference, Flp-out, and CRISPR/Cas9 technologies. All three strategies have been validated to be highly effective, with the best using chromatin-peptide fused Cas9 variants and scaffold optimized sgRNAs. As a proof of principle, we conducted a comprehensive intersection analysis of CCT genes expression profiles in the clock neurons, uncovering 43 CCT genes present in clock neurons. Specific elimination of each from clock neurons revealed that loss of the neuropeptide CNMa in two posterior dorsal clock neurons (DN1ps) or its receptor (CNMaR) caused advanced morning activity, indicating a suppressive role of CNMa-CNMaR on morning anticipation, opposite to the promoting role of PDF-PDFR on morning anticipation. These results demonstrate the effectiveness of conditional CCTomics and its tools created here and establish an antagonistic relationship between CNMa-CNMaR and PDF-PDFR signaling in regulating morning anticipation.