Revealing an outward-facing open conformational state in a CLC Cl-/H+ exchange transporter

  1. Chandra M Khantwal
  2. Sherwin J Abraham
  3. Wei Han
  4. Tao Jiang
  5. Tanmay S Chavan
  6. Ricky C Cheng
  7. Shelley M Elvington
  8. Corey W Liu
  9. Irimpan I Mathews
  10. Richard A Stein
  11. Hassane S Mchaourab
  12. Emad Tajkhorshid
  13. Merritt Maduke  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. University of Illinois at Urbana-Champaign, United States
  3. Stanford University, United States
  4. Vanderbilt University, United States

Abstract

CLC secondary active transporters exchange Cl- for H+. Crystal structures have suggested that the conformational change from occluded to outward-facing states is unusually simple, involving only the rotation of a conserved glutamate (Gluex) upon its protonation. Using 19F NMR, we show that as [H+] is increased to protonate Gluex and enrich the outward-facing state, a residue ~20 Å away from Gluex, near the subunit interface, moves from buried to solvent-exposed. Consistent with functional relevance of this motion, constriction via inter-subunit cross-linking reduces transport. Molecular dynamics simulations indicate that the cross-link dampens extracellular gate-opening motions. In support of this model, mutations that decrease steric contact between Helix N (part of the extracellular gate) and Helix P (at the subunit interface) remove the inhibitory effect of the cross-link. Together, these results demonstrate the formation of a previously uncharacterized 'outward-facing open' state, and highlight the relevance of global structural changes in CLC function.

Article and author information

Author details

  1. Chandra M Khantwal

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sherwin J Abraham

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wei Han

    Department of Biochemistry, College of Medicine, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tao Jiang

    Department of Biochemistry, College of Medicine, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tanmay S Chavan

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ricky C Cheng

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shelley M Elvington

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Corey W Liu

    Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Irimpan I Mathews

    Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Richard A Stein

    Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Hassane S Mchaourab

    Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Emad Tajkhorshid

    Department of Biochemistry, College of Medicine, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Merritt Maduke

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    maduke@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Richard Aldrich, The University of Texas at Austin, United States

Version history

  1. Received: August 27, 2015
  2. Accepted: January 14, 2016
  3. Accepted Manuscript published: January 22, 2016 (version 1)
  4. Version of Record published: February 18, 2016 (version 2)

Copyright

© 2016, Khantwal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,387
    views
  • 659
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chandra M Khantwal
  2. Sherwin J Abraham
  3. Wei Han
  4. Tao Jiang
  5. Tanmay S Chavan
  6. Ricky C Cheng
  7. Shelley M Elvington
  8. Corey W Liu
  9. Irimpan I Mathews
  10. Richard A Stein
  11. Hassane S Mchaourab
  12. Emad Tajkhorshid
  13. Merritt Maduke
(2016)
Revealing an outward-facing open conformational state in a CLC Cl-/H+ exchange transporter
eLife 5:e11189.
https://doi.org/10.7554/eLife.11189

Share this article

https://doi.org/10.7554/eLife.11189

Further reading

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.

    1. Structural Biology and Molecular Biophysics
    Christian Galicia, Giambattista Guaitoli ... Wim Versées
    Research Article

    Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson’s disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.