Neto auxiliary proteins control both the trafficking and biophysical properties of the kainate receptor GluK1

  1. Nengyin Sheng
  2. Yun S Shi
  3. Richa Madan Lomash
  4. Katherine W Roche
  5. Roger A Nicoll  Is a corresponding author
  1. University of California, San Francisco, United States
  2. National Institutes of Health, United States

Abstract

Kainate receptors (KARs) are a subfamily of glutamate receptors mediating excitatory synaptic transmission and Neto proteins are recently identified auxiliary subunits for KARs. However, the roles of Neto proteins in the synaptic trafficking of KAR GluK1 are poorly understood. Here, using the hippocampal CA1 pyramidal neuron as a null background system we find that surface expression of GluK1 receptor itself is very limited and is not targeted to excitatory synapses. Both Neto1 and Neto2 profoundly increase GluK1 surface expression and also drive GluK1 to synapses. However, the regulation GluK1 synaptic targeting by Neto proteins is independent of their role in promoting surface trafficking. Interestingly, GluK1 is excluded from synapses expressing AMPA receptors and is selectively incorporated into silent synapses. Neto2, but not Neto1, slows GluK1 deactivation, whereas Neto1 speeds GluK1 desensitization and Neto2 slows desensitization. These results establish critical roles for Neto auxiliary subunits controlling KARs properties and synaptic incorporation.

Article and author information

Author details

  1. Nengyin Sheng

    Deparment of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yun S Shi

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Richa Madan Lomash

    Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Katherine W Roche

    Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Roger A Nicoll

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    For correspondence
    roger.nicoll@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Marlene Bartos, Albert-Ludwigs-Universität Freiburg, Germany

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were housed in rodent housing at the UCSF and the animal health was monitored by a staff that includes the attending veterinarian, a veterinary pathologist, and a team of veterinary nurses. The University of California, San Francisco has on file with the Office of Protection from Research Risks, National Institutes of Health, U.S. Public Health Service (PHS), an approved Assurance of Compliance with PHS Policy on Humane Care and Use of Laboratory Animals by Awardee Institutions (#3400-01). That document expresses UCSF's commitment to comply with PHS policy and all applicable laws and regulations regarding the care and use of laboratory animals in research and instruction.

Version history

  1. Received: September 17, 2015
  2. Accepted: December 21, 2015
  3. Accepted Manuscript published: December 31, 2015 (version 1)
  4. Version of Record published: January 30, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,863
    views
  • 503
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nengyin Sheng
  2. Yun S Shi
  3. Richa Madan Lomash
  4. Katherine W Roche
  5. Roger A Nicoll
(2015)
Neto auxiliary proteins control both the trafficking and biophysical properties of the kainate receptor GluK1
eLife 4:e11682.
https://doi.org/10.7554/eLife.11682

Share this article

https://doi.org/10.7554/eLife.11682

Further reading

    1. Neuroscience
    Yu-Feng Xie, Jane Yang ... Steven A Prescott
    Research Article

    Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy – achieving similar function using different components – and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.

    1. Neuroscience
    Mischa Vance Bandet, Ian Robert Winship
    Research Article

    Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within ‘remapped’ forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.