A cellular and regulatory map of the cholinergic nervous system of C.elegans

  1. Laura Pereira
  2. Paschalis Kratsios
  3. Esther Serrano-Saiz
  4. Hila Sheftel
  5. Avi E Mayo
  6. David H Hall
  7. John G White
  8. Brigitte LeBoeuf
  9. L Rene Garcia
  10. Uri Alon
  11. Oliver Hobert  Is a corresponding author
  1. Howard Hughes Medical Institute, Columbia University, United States
  2. Weizmann Institute of Science, Israel
  3. Albert Einstein College of Medicine, United States
  4. MRC Laboratory of Molecular Biology, United Kingdom
  5. Texas A&M University, United States
  6. Howard Hughes Medical Institute, Texas A&M University, United States

Abstract

Nervous system maps are of critical importance for understanding how nervous systemsdevelop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C.elegans nervous system. We find that acetylcholine is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional control mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly.

Article and author information

Author details

  1. Laura Pereira

    Department of Biological Sciences, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  2. Paschalis Kratsios

    Department of Biological Sciences, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New york, United States
    Competing interests
    No competing interests declared.
  3. Esther Serrano-Saiz

    Department of Biological Sciences, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  4. Hila Sheftel

    Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  5. Avi E Mayo

    Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  6. David H Hall

    Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  7. John G White

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  8. Brigitte LeBoeuf

    Department of Biology, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  9. L Rene Garcia

    Department of Biology, Howard Hughes Medical Institute, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  10. Uri Alon

    Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  11. Oliver Hobert

    Department of Biological Sciences, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, United States
    For correspondence
    or38@columbia.edu
    Competing interests
    Oliver Hobert, Reviewing editor, eLife.

Reviewing Editor

  1. Kang Shen, Howard Hughes Medical Institute, Stanford University, United States

Version history

  1. Received: October 20, 2015
  2. Accepted: December 22, 2015
  3. Accepted Manuscript published: December 25, 2015 (version 1)
  4. Version of Record published: February 18, 2016 (version 2)

Copyright

© 2015, Pereira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,538
    views
  • 1,806
    downloads
  • 242
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Pereira
  2. Paschalis Kratsios
  3. Esther Serrano-Saiz
  4. Hila Sheftel
  5. Avi E Mayo
  6. David H Hall
  7. John G White
  8. Brigitte LeBoeuf
  9. L Rene Garcia
  10. Uri Alon
  11. Oliver Hobert
(2015)
A cellular and regulatory map of the cholinergic nervous system of C.elegans
eLife 4:e12432.
https://doi.org/10.7554/eLife.12432

Share this article

https://doi.org/10.7554/eLife.12432

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.