A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans

  1. William M Roberts
  2. Steven B Augustine
  3. Kristy J Lawton
  4. Theodore H Lindsay
  5. Tod R Thiele
  6. Eduardo J Izquierdo
  7. Serge Faumont
  8. Rebecca A Lindsay
  9. Matthew Cale Britton
  10. Navin Pokala
  11. Cornelia I Bargmann
  12. Shawn R Lockery  Is a corresponding author
  1. University of Oregon, United States
  2. University of Pennsylvania, United States
  3. Reed College, United States
  4. California Institute of Technology, United States
  5. University of Toronto, Canada
  6. Indiana University, United States
  7. Children's Hospital Los Angeles, United States
  8. University of Minnesota, United States
  9. New York Institiute of Technology, United States
  10. Howard Hughes Medical Institute, Rockefeller University, United States

Abstract

Random search is a behavioral strategy used by organisms from bacteria to humans to locate food that is randomly distributed and undetectable at a distance. We investigated this behavior in the nematode Caenorhabditis elegans, an organism with a small, well-described nervous system. Here we formulate a mathematical model of random search abstracted from the C. elegans connectome and fit to a large-scale kinematic analysis of C. elegans behavior at submicron resolution. The model predicts behavioral effects of neuronal ablations and genetic perturbations, as well as unexpected aspects of wild type behavior. The predictive success of the model indicates that random search in C. elegans can be understood in terms of a neuronal flip-flop circuit involving reciprocal inhibition between two populations of stochastic neurons. Our findings establish a unified theoretical framework for understanding C. elegans locomotion and a testable neuronal model of random search that can be applied to other organisms.

Article and author information

Author details

  1. William M Roberts

    Institute of Neuroscience, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven B Augustine

    School of Nursing, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kristy J Lawton

    Biology Department, Reed College, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Theodore H Lindsay

    Division of biology and biological engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tod R Thiele

    Department of Biological Sciences, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Eduardo J Izquierdo

    Cognitive Science Program, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Serge Faumont

    Institute of Neuroscience, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Rebecca A Lindsay

    Department of Ophthalmology, The Vision Center, Children's Hospital Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew Cale Britton

    Department of Neurology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Navin Pokala

    Department of Life Sciences, New York Institiute of Technology, Old Westbury, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Cornelia I Bargmann

    Howard Hughes Medical Institute, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Shawn R Lockery

    Institute of Neuroscience, University of Oregon, Eugene, United States
    For correspondence
    shawn@uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Version history

  1. Received: October 26, 2015
  2. Accepted: January 19, 2016
  3. Accepted Manuscript published: January 29, 2016 (version 1)
  4. Version of Record published: March 8, 2016 (version 2)
  5. Version of Record updated: October 11, 2018 (version 3)

Copyright

© 2016, Roberts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,069
    views
  • 1,316
    downloads
  • 78
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William M Roberts
  2. Steven B Augustine
  3. Kristy J Lawton
  4. Theodore H Lindsay
  5. Tod R Thiele
  6. Eduardo J Izquierdo
  7. Serge Faumont
  8. Rebecca A Lindsay
  9. Matthew Cale Britton
  10. Navin Pokala
  11. Cornelia I Bargmann
  12. Shawn R Lockery
(2016)
A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans
eLife 5:e12572.
https://doi.org/10.7554/eLife.12572

Share this article

https://doi.org/10.7554/eLife.12572

Further reading

    1. Computational and Systems Biology
    David Geller-McGrath, Kishori M Konwar ... Jason E McDermott
    Tools and Resources

    The reconstruction of complete microbial metabolic pathways using ‘omics data from environmental samples remains challenging. Computational pipelines for pathway reconstruction that utilize machine learning methods to predict the presence or absence of KEGG modules in incomplete genomes are lacking. Here, we present MetaPathPredict, a software tool that incorporates machine learning models to predict the presence of complete KEGG modules within bacterial genomic datasets. Using gene annotation data and information from the KEGG module database, MetaPathPredict employs deep learning models to predict the presence of KEGG modules in a genome. MetaPathPredict can be used as a command line tool or as a Python module, and both options are designed to be run locally or on a compute cluster. Benchmarks show that MetaPathPredict makes robust predictions of KEGG module presence within highly incomplete genomes.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kenya Hitomi, Yoichiro Ishii, Bei-Wen Ying
    Research Article

    As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.