Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy

  1. Achira Roy
  2. Jonathan Skibo
  3. Franck Kalume
  4. Jing Ni
  5. Sherri Rankin
  6. Yiling Lu
  7. William B Dobyns
  8. Gordon B Mills
  9. Jean J Zhao
  10. Suzanne J Baker
  11. Kathleen J Millen  Is a corresponding author
  1. Seattle Children's Research Institute, United States
  2. Dana Farber Cancer Institute, United States
  3. St. Jude Children's Research Hospital, United States
  4. The University of Texas MD Anderson Cancer Center, United States

Abstract

Mutations in the catalytic subunit of phosphoinositide 3-kinase (PIK3CA) and other PI3K-AKT pathway components have been associated with cancer and a wide spectrum of brain and body overgrowth. In the brain, the phenotypic spectrum of PIK3CA-related segmental overgrowth includes bilateral dysplastic megalencephaly, hemimegalencephaly and focal cortical dysplasia, the most common cause of intractable pediatric epilepsy. We generated mouse models expressing the most common activating Pik3ca mutations (H1047R and E545K) in developing neural progenitors. These accurately recapitulate all the key human pathological features including brain enlargement, cortical malformation, hydrocephalus and epilepsy, with phenotypic severity dependent on the mutant allele and its time of activation. Underlying mechanisms include increased proliferation, cell size and altered white matter. Notably, we demonstrate that acute 1hour-suppression of PI3K signaling despite the ongoing presence of dysplasia has dramatic anti-epileptic benefit. Thus PI3K inhibitors offer a promising new avenue for effective anti-epileptic therapy for intractable pediatric epilepsy patients.

Article and author information

Author details

  1. Achira Roy

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jonathan Skibo

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Franck Kalume

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jing Ni

    Department of Cancer biology, Dana Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sherri Rankin

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yiling Lu

    The University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. William B Dobyns

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gordon B Mills

    The University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean J Zhao

    Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Suzanne J Baker

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Kathleen J Millen

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    kathleen.millen@seattlechildrens.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Sean J Morrison, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, United States

Ethics

Animal experimentation: All animal experimentation done in this study was done in accordance with the guidelines laid down by the Institutional Animal Care and Use Committees (IACUC) of Seattle Children's Research Institute, Seattle, WA (protocol 14208), St. Jude Children's Research Hospital, Memphis, TN (protocol 278), Dana Farber Cancer Institute, Boston, MA (protocol 06-034).

Version history

  1. Received: October 29, 2015
  2. Accepted: November 26, 2015
  3. Accepted Manuscript published: December 3, 2015 (version 1)
  4. Version of Record published: January 27, 2016 (version 2)

Copyright

© 2015, Roy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,560
    views
  • 822
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Achira Roy
  2. Jonathan Skibo
  3. Franck Kalume
  4. Jing Ni
  5. Sherri Rankin
  6. Yiling Lu
  7. William B Dobyns
  8. Gordon B Mills
  9. Jean J Zhao
  10. Suzanne J Baker
  11. Kathleen J Millen
(2015)
Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy
eLife 4:e12703.
https://doi.org/10.7554/eLife.12703

Share this article

https://doi.org/10.7554/eLife.12703

Further reading

    1. Neuroscience
    David Alais, Jacob Coorey ... Matthew J Davidson
    Research Article

    When the eyes view separate and incompatible images, the brain suppresses one image and promotes the other into visual awareness. Periods of interocular suppression can be prolonged during continuous flash suppression (CFS) – when one eye views a static ‘target’ while the other views a complex dynamic stimulus. Measuring the time needed for a suppressed image to break CFS (bCFS) has been widely used to investigate unconscious processing, and the results have generated controversy regarding the scope of visual processing without awareness. Here, we address this controversy with a new ‘CFS tracking’ paradigm (tCFS) in which the suppressed monocular target steadily increases in contrast until breaking into awareness (as in bCFS) after which it decreases until it again disappears (reCFS), with this cycle continuing for many reversals. Unlike bCFS, tCFS provides a measure of suppression depth by quantifying the difference between breakthrough and suppression thresholds. tCFS confirms that (i) breakthrough thresholds indeed differ across target types (e.g. faces vs gratings, as bCFS has shown) – but (ii) suppression depth does not vary across target types. Once the breakthrough contrast is reached for a given stimulus, all stimuli require a strikingly uniform reduction in contrast to reach the corresponding suppression threshold. This uniform suppression depth points to a single mechanism of CFS suppression, one that likely occurs early in visual processing because suppression depth was not modulated by target salience or complexity. More fundamentally, it shows that variations in bCFS thresholds alone are insufficient for inferring whether the barrier to achieving awareness exerted by interocular suppression is weaker for some categories of visual stimuli compared to others.

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.