PI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms

  1. Yevgeniya A Mironova
  2. Guy M Lenk
  3. Jing-Ping Lin
  4. Seung Joon Lee
  5. Jeffery L Twiss
  6. Ilaria Vaccari
  7. Alessandra Bolino
  8. Leif A Havton
  9. Sang H Min
  10. Charles S Abrams
  11. Peter Shrager
  12. Miriam H Meisler
  13. Roman J Giger  Is a corresponding author
  1. University of Michigan School of Medicine, United States
  2. University of South Carolina, United States
  3. San Raffaele Scientific Institute, Italy
  4. David Geffen School of Medicine at UCLA, United States
  5. University of Pennsylvania School of Medicine, United States
  6. University of Rochester Medical Center, United States

Abstract

Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impaired OL maturation, severe CNS hypomyelination and delayed propagation of compound action potentials. Primary OLs deficient in Fig4 accumulate large LAMP1+ and Rab7+ vesicular structures and exhibit reduced membrane sheet expansion. PI(3,5)P2 deficiency leads to accumulation of myelin-associated glycoprotein (MAG) in LAMP1+ perinuclear vesicles that fail to migrate to the nascent myelin sheet. Live-cell imaging of OLs after genetic or pharmacological inhibition of PI(3,5)P2 synthesis revealed impaired trafficking of plasma membrane-derived MAG through the endolysosomal system in primary cells and brain tissue. Collectively, our studies identify PI(3,5)P2 as a key regulator of myelin membrane trafficking and myelinogenesis.

Article and author information

Author details

  1. Yevgeniya A Mironova

    Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Guy M Lenk

    Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jing-Ping Lin

    Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Seung Joon Lee

    Department of Biological Sciences, University of South Carolina, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeffery L Twiss

    Department of Biological Sciences, University of South Carolina, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ilaria Vaccari

    Human Inherited Neuropathies Unit, INSPE-Institute for Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Alessandra Bolino

    Human Inherited Neuropathies Unit, INSPE-Institute for Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Leif A Havton

    Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sang H Min

    Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Charles S Abrams

    Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter Shrager

    Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Miriam H Meisler

    Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Roman J Giger

    Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
    For correspondence
    rgiger@med.umich.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ben Barres, Stanford School of Medicine, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to protocols approved by the University committee on use and care for animals (UCUCA protocols: #00005863 and #00005902) of the University of Michigan.

Version history

  1. Received: November 13, 2015
  2. Accepted: March 23, 2016
  3. Accepted Manuscript published: March 23, 2016 (version 1)
  4. Version of Record published: June 1, 2016 (version 2)

Copyright

© 2016, Mironova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,784
    views
  • 743
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yevgeniya A Mironova
  2. Guy M Lenk
  3. Jing-Ping Lin
  4. Seung Joon Lee
  5. Jeffery L Twiss
  6. Ilaria Vaccari
  7. Alessandra Bolino
  8. Leif A Havton
  9. Sang H Min
  10. Charles S Abrams
  11. Peter Shrager
  12. Miriam H Meisler
  13. Roman J Giger
(2016)
PI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms
eLife 5:e13023.
https://doi.org/10.7554/eLife.13023

Share this article

https://doi.org/10.7554/eLife.13023

Further reading

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.

    1. Neuroscience
    Salima Messaoudi, Ada Allam ... Isabelle Caille
    Research Article

    The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.