A lipoprotein/β-barrel complex monitors lipopolysaccharide integrity transducing information across the outer membrane

  1. Anna Konovalova
  2. Angela M Mitchell
  3. Thomas J Silhavy  Is a corresponding author
  1. Princeton University, United States

Abstract

Lipoprotein RcsF is the OM component of the Rcs envelope stress response. RcsF exists in complexes with β-barrel proteins (OMPs) allowing it to adopt a transmembrane orientation with a lipidated N-terminal domain on the cell surface and a periplasmic C-terminal domain. Here we report that mutations that remove BamE or alter a residue in the RcsF trans-lumen domain specifically prevent assembly of the interlocked complexes without inactivating either RcsF or the OMP. Using these mutations we demonstrate that these RcsF/OMP complexes are required for sensing OM outer leaflet stress. Using mutations that alter the positively charged surface-exposed domain, we show that RcsF monitors lateral interactions between lipopolysaccharide (LPS) molecules. When these interactions are disrupted by cationic antimicrobial peptides, or by the loss of negatively charged phosphate groups on the LPS molecule, this information is transduced to the RcsF C-terminal signaling domain located in the periplasm to activate the stress response.

Article and author information

Author details

  1. Anna Konovalova

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Angela M Mitchell

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas J Silhavy

    Department of Molecular Biology, Princeton University, Princeton, United States
    For correspondence
    tsilhavy@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Michael A Marletta, University of California, Berkeley, United States

Version history

  1. Received: February 15, 2016
  2. Accepted: June 7, 2016
  3. Accepted Manuscript published: June 10, 2016 (version 1)
  4. Version of Record published: July 12, 2016 (version 2)

Copyright

© 2016, Konovalova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,883
    views
  • 830
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna Konovalova
  2. Angela M Mitchell
  3. Thomas J Silhavy
(2016)
A lipoprotein/β-barrel complex monitors lipopolysaccharide integrity transducing information across the outer membrane
eLife 5:e15276.
https://doi.org/10.7554/eLife.15276

Share this article

https://doi.org/10.7554/eLife.15276

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Jason E Stajich, Brian Lovett ... Carolyn Elya
    Research Article

    Despite over a century of observations, the obligate insect parasites within the order Entomophthorales remain poorly characterized at the genetic level. In this manuscript, we present a genome for a laboratory-tractable Entomophthora muscae isolate that infects fruit flies. Our E. muscae assembly is 1.03 Gb, consists of 7810 contigs and contains 81.3% complete fungal BUSCOs. Using a comparative approach with recent datasets from entomophthoralean fungi, we show that giant genomes are the norm within Entomophthoraceae owing to extensive, but not recent, Ty3 retrotransposon activity. In addition, we find that E. muscae and its closest allies possess genes that are likely homologs to the blue-light sensor white-collar 1, a Neurospora crassa gene that has a well-established role in maintaining circadian rhythms. We uncover evidence that E. muscae diverged from other entomophthoralean fungi by expansion of existing families, rather than loss of particular domains, and possesses a potentially unique suite of secreted catabolic enzymes, consistent with E. muscae’s species-specific, biotrophic lifestyle. Finally, we offer a head-to-head comparison of morphological and molecular data for species within the E. muscae species complex that support the need for taxonomic revision within this group. Altogether, we provide a genetic and molecular foundation that we hope will provide a platform for the continued study of the unique biology of entomophthoralean fungi.

    1. Microbiology and Infectious Disease
    Cenk Celik, Stella Tue Ting Lee ... Guillaume Thibault
    Research Article

    Wound infections are highly prevalent and can lead to delayed or failed healing, causing significant morbidity and adverse economic impacts. These infections occur in various contexts, including diabetic foot ulcers, burns, and surgical sites. Enterococcus faecalis is often found in persistent non-healing wounds, but its contribution to chronic wounds remains understudied. To address this, we employed single-cell RNA sequencing (scRNA-seq) on infected wounds in comparison to uninfected wounds in a mouse model. Examining over 23,000 cells, we created a comprehensive single-cell atlas that captures the cellular and transcriptomic landscape of these wounds. Our analysis revealed unique transcriptional and metabolic alterations in infected wounds, elucidating the distinct molecular changes associated with bacterial infection compared to the normal wound healing process. We identified dysregulated keratinocyte and fibroblast transcriptomes in response to infection, jointly contributing to an anti-inflammatory environment. Notably, E. faecalis infection prompted a premature, incomplete epithelial-mesenchymal transition in keratinocytes. Additionally, E. faecalis infection modulated M2-like macrophage polarization by inhibiting pro-inflammatory resolution in vitro, in vivo, and in our scRNA-seq atlas. Furthermore, we discovered macrophage crosstalk with neutrophils, which regulates chemokine signaling pathways, while promoting anti-inflammatory interactions with endothelial cells. Overall, our findings offer new insights into the immunosuppressive role of E. faecalis in wound infections.