NG2 glial cells integrate synaptic input in global and dendritic calcium signals

Abstract

Synaptic signaling to NG2-expressing oligodendrocyte precursor cells (NG2 cells) could be key to rendering myelination of axons dependent on neuronal activity, but it has remained unclear whether NG2 glial cells integrate and respond to synaptic input. Here we show that NG2 cells perform linear integration of glutamatergic synaptic inputs and respond with increasing dendritic calcium elevations. Synaptic activity induces rapid Ca2+ signals mediated by low-voltage activated Ca2+ channels under strict inhibitory control of voltage-gated A-type K+ channels. Ca2+ signals can be global and originate throughout the cell. However, voltage-gated channels are also found in thin dendrites which act as compartmentalized processing units and generate local calcium transients. Taken together, the activity-dependent control of Ca2+ signals by A-type channels and the global versus local signaling domains make intracellular Ca2+ in NG2 cells a prime signaling molecule to transform neurotransmitter release into activity-dependent myelination.

Article and author information

Author details

  1. Wenjing Sun

    Department of Neurosurgery, University Clinic Bonn, Bonn, Germany
    For correspondence
    wsun@uni-bonn.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0905-7420
  2. Elizabeth A Matthews

    Department of Neurosurgery, University Clinic Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Vicky Nicolas

    Department of Neurosurgery, University Clinic Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Susanne Schoch

    Department of Neuropathology, University Clinic Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Dirk Dietrich

    Department of Neurosurgery, University Clinic Bonn, Bonn, Germany
    For correspondence
    dirk.dietrich@uni-bonn.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4307-2448

Funding

Deutsche Forschungsgemeinschaft (SPP 1757, SFB 1089, DI853/3, INST 1172/15-1)

  • Dirk Dietrich

Deutsche Forschungsgemeinschaft (SFB 1089, SCHO820/5)

  • Susanne Schoch

Bundesministerium für Bildung und Forschung (01GQ0806)

  • Susanne Schoch

BONFOR

  • Wenjing Sun

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Ethics

Animal experimentation: This study was performed in accordance with national and institutional guidelines for the care and use of laboratory animals. Every effort was made to minimize suffering.

Version history

  1. Received: March 23, 2016
  2. Accepted: September 17, 2016
  3. Accepted Manuscript published: September 19, 2016 (version 1)
  4. Version of Record published: October 5, 2016 (version 2)

Copyright

© 2016, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,267
    views
  • 491
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wenjing Sun
  2. Elizabeth A Matthews
  3. Vicky Nicolas
  4. Susanne Schoch
  5. Dirk Dietrich
(2016)
NG2 glial cells integrate synaptic input in global and dendritic calcium signals
eLife 5:e16262.
https://doi.org/10.7554/eLife.16262

Share this article

https://doi.org/10.7554/eLife.16262

Further reading

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.

    1. Neuroscience
    Baiwei Liu, Zampeta-Sofia Alexopoulou, Freek van Ede
    Research Article

    Working memory enables us to bridge past sensory information to upcoming future behaviour. Accordingly, by its very nature, working memory is concerned with two components: the past and the future. Yet, in conventional laboratory tasks, these two components are often conflated, such as when sensory information in working memory is encoded and tested at the same location. We developed a task in which we dissociated the past (encoded location) and future (to-be-tested location) attributes of visual contents in working memory. This enabled us to independently track the utilisation of past and future memory attributes through gaze, as observed during mnemonic selection. Our results reveal the joint consideration of past and future locations. This was prevalent even at the single-trial level of individual saccades that were jointly biased to the past and future. This uncovers the rich nature of working memory representations, whereby both past and future memory attributes are retained and can be accessed together when memory contents become relevant for behaviour.