Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence

  1. Eun Jo Du
  2. Tae Jung Ahn
  3. Xianlan Wen
  4. Dae-Won Seo
  5. Duk L Na
  6. Jae Young Kwon
  7. Myunghwan Choi
  8. Hyung-Wook Kim
  9. Hana Cho
  10. KyeongJin Kang  Is a corresponding author
  1. Sungkyunkwan University School of Medicine, Republic of Korea
  2. Sungkyunkwan University, Republic of Korea
  3. Sejong University, Republic of Korea

Abstract

Solar irradiation including ultraviolet (UV) light causes tissue damage by generating reactive free radicals that can be electrophilic or nucleophilic due to unpaired electrons. Little is known about how free radicals induced by natural sunlight are rapidly detected and avoided by animals. We discover that Drosophila Transient Receptor Potential Ankyrin 1 (TRPA1), previously known only as an electrophile receptor, sensitively detects photochemically active sunlight through nucleophile sensitivity. Rapid light-dependent feeding deterrence in Drosophila was mediated only by the TRPA1(A) isoform, despite the TRPA1(A) and TRPA1(B) isoforms having similar electrophile sensitivities. Such isoform dependentce re-emerges in the detection of structurally varied nucleophilic compounds and nucleophilicity-accompanying hydrogen peroxide (H2O2). Furthermore, these isoform-dependent mechanisms require a common set of TRPA1(A)-specific residues dispensable for electrophile detection. Collectively, TRPA1(A) rapidly responds to natural sunlight intensities through its nucleophile sensitivity as a receptor of photochemically generated radicals, leading to an acute light-induced behavioral shift in Drosophila.

Article and author information

Author details

  1. Eun Jo Du

    Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Tae Jung Ahn

    Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Xianlan Wen

    Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Dae-Won Seo

    Department of Neurology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Duk L Na

    Department of Neurology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Jae Young Kwon

    Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Myunghwan Choi

    Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Hyung-Wook Kim

    College of Life Sciences, Sejong University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Hana Cho

    Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9394-8671
  10. KyeongJin Kang

    Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    For correspondence
    kangk@skku.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0446-469X

Funding

Ministry of Education (NRF-2015R1D1A1A01057288)

  • KyeongJin Kang

Ministry of Education (2015H-1A2A-1034723)

  • Tae Jung Ahn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leslie C Griffith, Brandeis University, United States

Version history

  1. Received: June 2, 2016
  2. Accepted: September 21, 2016
  3. Accepted Manuscript published: September 22, 2016 (version 1)
  4. Version of Record published: October 18, 2016 (version 2)

Copyright

© 2016, Du et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,462
    views
  • 453
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eun Jo Du
  2. Tae Jung Ahn
  3. Xianlan Wen
  4. Dae-Won Seo
  5. Duk L Na
  6. Jae Young Kwon
  7. Myunghwan Choi
  8. Hyung-Wook Kim
  9. Hana Cho
  10. KyeongJin Kang
(2016)
Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence
eLife 5:e18425.
https://doi.org/10.7554/eLife.18425

Share this article

https://doi.org/10.7554/eLife.18425

Further reading

    1. Neuroscience
    Ivan Tomić, Paul M Bays
    Research Article

    Probing memory of a complex visual image within a few hundred milliseconds after its disappearance reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second. Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or ‘iconic’ memory (IM), while the latter relies on capacity-limited but comparatively stable visual working memory (VWM). While iconic decay and VWM capacity have been extensively studied independently, currently no single framework quantitatively accounts for the dynamics of memory fidelity over these time scales. Here, we extend a stationary neural population model of VWM with a temporal dimension, incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory, and a slower accumulation of internal error that causes memorized features to randomly drift over time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall by lifting the effective limit on VWM signal strength imposed when multiple items compete for representation, allowing memory for the cued item to be supplemented with information from the decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions while excluding alternative model architectures. A key conclusion is that differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a single resource-limited WM store.

    1. Neuroscience
    Emilio Salinas, Bashirul I Sheikh
    Insight

    Our ability to recall details from a remembered image depends on a single mechanism that is engaged from the very moment the image disappears from view.