Structure of the active form of human Origin Recognition Complex and its ATPase motor module

  1. Ante Tocilj
  2. Kin Fan On
  3. Zuanning Yuan
  4. Jingchuan Sun
  5. Elad Elkayam
  6. Huilin Li
  7. Bruce Stillman  Is a corresponding author
  8. Leemor Joshua-Tor  Is a corresponding author
  1. Cold Spring Harbor Laboratory, United States
  2. Cold Spring Harbor Laboratory/HHMI, United States
  3. Brookhaven National Laboratory/Stony Brook University, United States
  4. Brookhaven National Laboratory, United States
  5. Van Andel Research Institute, United States

Abstract

Binding of the Origin Recognition Complex (ORC) to origins of replication marks the first step in the initiation of replication of the genome in all eukaryotic cells. Here, we report the structure of the active form of human ORC determined by X-ray crystallography and cryo-electron microscopy. The complex is composed of an ORC1/4/5 motor module lobe in an organization reminiscent of the DNA polymerase clamp loader complexes. A second lobe contains the ORC2/3 subunits. The complex is organized as a double-layered shallow corkscrew, with the AAA+ and AAA+-like domains forming one layer, and the winged-helix domains (WHDs) forming a top layer. CDC6 fits easily between ORC1 and ORC2, completing the ring and the DNA-binding channel, forming an additional ATP hydrolysis site. Analysis of the ATPase activity of the complex provides a basis for understanding ORC activity as well as molecular defects observed in Meier-Gorlin Syndrome mutations.

Article and author information

Author details

  1. Ante Tocilj

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kin Fan On

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zuanning Yuan

    Biology Department, Brookhaven National Laboratory/Stony Brook University, Upton/Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jingchuan Sun

    Biology Department, Brookhaven National Laboratory, Upton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Elad Elkayam

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Huilin Li

    H. Li Lab, Van Andel Research Institute, Grand Rapids, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bruce Stillman

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    For correspondence
    stillman@cshl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9453-4091
  8. Leemor Joshua-Tor

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    For correspondence
    leemor@cshl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8185-8049

Funding

Howard Hughes Medical Institute

  • Ante Tocilj

National Institute of General Medical Sciences (GM45436)

  • Bruce Stillman

National Cancer Institute (PO1-CA13016)

  • Bruce Stillman

National Institute of General Medical Sciences (GM111742)

  • Huilin Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John Kuriyan, Howard Hughes Medical Institute, University of California, Berkeley, United States

Version history

  1. Received: August 22, 2016
  2. Accepted: January 15, 2017
  3. Accepted Manuscript published: January 23, 2017 (version 1)
  4. Accepted Manuscript updated: January 24, 2017 (version 2)
  5. Version of Record published: February 3, 2017 (version 3)

Copyright

© 2017, Tocilj et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,087
    views
  • 887
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ante Tocilj
  2. Kin Fan On
  3. Zuanning Yuan
  4. Jingchuan Sun
  5. Elad Elkayam
  6. Huilin Li
  7. Bruce Stillman
  8. Leemor Joshua-Tor
(2017)
Structure of the active form of human Origin Recognition Complex and its ATPase motor module
eLife 6:e20818.
https://doi.org/10.7554/eLife.20818

Share this article

https://doi.org/10.7554/eLife.20818

Further reading

    1. Structural Biology and Molecular Biophysics
    Christian Galicia, Giambattista Guaitoli ... Wim Versées
    Research Article

    Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson’s disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.