Cooperative and acute inhibitionby multiple C-terminal motifs of L-type Ca2+ channels

  1. Nan Liu
  2. Yaxiong Yang
  3. Lin Ge
  4. Min Liu
  5. Henry M Colecraft
  6. Xiaodong Liu  Is a corresponding author
  1. Tsinghua University, China
  2. Columbia University, United States

Abstract

Inhibitions and antagonists of L-type Ca2+ channels are important to both research and therapeutics. Here, we report C-terminus mediated inhibition (CMI) for CaV1.3 that multiple motifs coordinate to tune down Ca2+ current and Ca2+ influx toward the lower limits determined by end-stage CDI (Ca2+-dependent inactivation). Among IQV (preIQ3-IQ domain), PCRD and DCRD (proximal or distal C-terminal regulatory domain), spatial closeness of any two modules, e.g., by constitutive fusion, facilitates the trio to form the complex, compete against calmodulin, and alter the gating. Acute CMI by rapamycin-inducible heterodimerization helps reconcile the concurrent activation/inactivation attenuations to ensure Ca2+ influx is reduced, in that Ca2+ current activated by depolarization is potently (~65%) inhibited at the peak (full activation), but not later on (end-stage inactivation, ~300 ms). Meanwhile, CMI provides a new paradigm to develop CaV1 inhibitors, the therapeutic potential of which is implied by computational modeling of CaV1.3 dysregulations related to Parkinson's disease.

Article and author information

Author details

  1. Nan Liu

    X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9606-4732
  2. Yaxiong Yang

    X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Lin Ge

    X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Min Liu

    X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Henry M Colecraft

    Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaodong Liu

    X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
    For correspondence
    liuxiaodong@tsinghua.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3171-9611

Funding

National Natural Science Foundation of China (81171382,31370822,81371604)

  • Xiaodong Liu

Natural Science Foundation of Beijing Municipality (7142089)

  • Xiaodong Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kenton J Swartz, National Institutes of Health, United States

Version history

  1. Received: October 5, 2016
  2. Accepted: January 5, 2017
  3. Accepted Manuscript published: January 6, 2017 (version 1)
  4. Version of Record published: January 30, 2017 (version 2)

Copyright

© 2017, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,096
    views
  • 384
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nan Liu
  2. Yaxiong Yang
  3. Lin Ge
  4. Min Liu
  5. Henry M Colecraft
  6. Xiaodong Liu
(2017)
Cooperative and acute inhibitionby multiple C-terminal motifs of L-type Ca2+ channels
eLife 6:e21989.
https://doi.org/10.7554/eLife.21989

Share this article

https://doi.org/10.7554/eLife.21989

Further reading

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.

    1. Structural Biology and Molecular Biophysics
    Christian Galicia, Giambattista Guaitoli ... Wim Versées
    Research Article

    Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson’s disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.