Phase-tuned neuronal firing encodes human contextual representations for navigational goals

  1. Andrew J Watrous  Is a corresponding author
  2. Jonathan Miller
  3. Salman E Qasim
  4. Itzhak Fried
  5. Joshua Jacobs
  1. Columbia University, United States
  2. University of California, Los Angeles, United States

Abstract

We previously demonstrated that the phase of oscillations modulates neural activity representing categorical information using human intracranial recordings and high-frequency activity from local field potentials (Watrous et al., 2015b). We extend these findings here using human single-neuron recordings during a navigation task. We identify neurons in the medial temporal lobe with firing-rate modulations for specific navigational goals, as well as for navigational planning and goal arrival. Going beyond this work, using a novel oscillation detection algorithm, we identify phase-locked neural firing that encodes information about a person's prospective navigational goal in the absence of firing rate changes. These results provide evidence for navigational planning and contextual accounts of human MTL function at the single-neuron level. More generally, our findings identify phase-coded neuronal firing as a component of the human neural code.

Data availability

The human single neuron recordings raw data can be obtained upon request from Joshua Jacobs (joshua.jacobs@columbia.edu). At this point, the raw data has not been made publicly available to ensure controlled access to the dataset and that the patients' anonymity is not compromised.

The following previously published data sets were used

Article and author information

Author details

  1. Andrew J Watrous

    Department of Biomedical Engineering, Columbia University, New York, United States
    For correspondence
    andrew.j.watrous@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3107-3726
  2. Jonathan Miller

    Department of Biomedical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Salman E Qasim

    Department of Biomedical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Itzhak Fried

    Department of Neurosurgery, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5962-2678
  5. Joshua Jacobs

    Department of Biomedical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Neurological Disorders and Stroke (NS033221)

  • Itzhak Fried

National Institute of Neurological Disorders and Stroke (NS084017)

  • Itzhak Fried

National Institute of Mental Health (MH104606)

  • Joshua Jacobs

National Science Foundation (DGE 16-44869)

  • Salman E Qasim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy E Behrens, University of Oxford, United Kingdom

Ethics

Human subjects: The Medical Institutional Review Board at the University of California-Los Angeles approved this study (IRB#10-000973) involving recordings from patients with drug-resistant epilepsy who provided informed consent to participate in research.

Version history

  1. Received: October 12, 2017
  2. Accepted: June 21, 2018
  3. Accepted Manuscript published: June 22, 2018 (version 1)
  4. Version of Record published: July 11, 2018 (version 2)

Copyright

© 2018, Watrous et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,991
    views
  • 450
    downloads
  • 89
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew J Watrous
  2. Jonathan Miller
  3. Salman E Qasim
  4. Itzhak Fried
  5. Joshua Jacobs
(2018)
Phase-tuned neuronal firing encodes human contextual representations for navigational goals
eLife 7:e32554.
https://doi.org/10.7554/eLife.32554

Share this article

https://doi.org/10.7554/eLife.32554

Further reading

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan D Barense
    Research Article Updated

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations – the crossmodal binding problem – remains poorly understood. Here, we applied multi-echo fMRI across a 4-day paradigm, in which participants learned three-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures – temporal pole and perirhinal cortex – differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased toward visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here we addressed how murine adult hippocampal NSC fate is regulated and describe how Scaffold Attachment Factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor Nuclear Factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.