Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans

  1. Ignacio Rebollo  Is a corresponding author
  2. Anne-Dominique Devauchelle
  3. Benoît Béranger
  4. Catherine Tallon-Baudry
  1. École normale supérieure, INSERM, PSL Research University, France
  2. Institut du Cerveau et de la Moelle épinière - ICM, France

Abstract

Resting-state networks offer a unique window into the brain's functional architecture, but their characterization remains limited to instantaneous connectivity thus far. Here, we describe a novel resting-state network based on the delayed connectivity between the brain and the slow electrical rhythm (0.05 Hz) generated in the stomach. The gastric network cuts across classical resting-state networks with partial overlap with autonomic regulation areas. This network is composed of regions with convergent functional properties involved in mapping bodily space through touch, action or vision, as well as mapping external space in bodily coordinates. The network is characterized by a precise temporal sequence of activations within a gastric cycle, beginning with somato-motor cortices and ending with the extrastriate body area and dorsal precuneus. Our results demonstrate that canonical resting-state networks based on instantaneous connectivity represent only one of the possible partitions of the brain into coherent networks based on temporal dynamics.

Article and author information

Author details

  1. Ignacio Rebollo

    Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France
    For correspondence
    ignacio.rebollo@cri-paris.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4119-9955
  2. Anne-Dominique Devauchelle

    Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Benoît Béranger

    Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Catherine Tallon-Baudry

    Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8480-5831

Funding

H2020 European Research Council (670325)

  • Catherine Tallon-Baudry

Agence Nationale de la Recherche (ANR-10-LABX-0087 IEC)

  • Catherine Tallon-Baudry

DIM cerveau et pensee

  • Ignacio Rebollo

Fondation Bettencourt Schueller

  • Ignacio Rebollo

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL*)

  • Catherine Tallon-Baudry

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hugo Critchley, University of Sussex, United Kingdom

Ethics

Human subjects: Participants received provided written informed consent for participation in the experiment. The study was approved by the ethics committee Comité de Protection des Personnes Ile de France III

Version history

  1. Received: November 3, 2017
  2. Accepted: March 20, 2018
  3. Accepted Manuscript published: March 21, 2018 (version 1)
  4. Version of Record published: May 4, 2018 (version 2)

Copyright

© 2018, Rebollo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,893
    views
  • 1,039
    downloads
  • 112
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ignacio Rebollo
  2. Anne-Dominique Devauchelle
  3. Benoît Béranger
  4. Catherine Tallon-Baudry
(2018)
Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans
eLife 7:e33321.
https://doi.org/10.7554/eLife.33321

Share this article

https://doi.org/10.7554/eLife.33321

Further reading

    1. Neuroscience
    Taicheng Huang, Jia Liu
    Research Article

    The fact that objects without proper support will fall to the ground is not only a natural phenomenon, but also common sense in mind. Previous studies suggest that humans may infer objects’ stability through a world model that performs mental simulations with a priori knowledge of gravity acting upon the objects. Here we measured participants’ sensitivity to gravity to investigate how the world model works. We found that the world model on gravity was not a faithful replica of the physical laws, but instead encoded gravity’s vertical direction as a Gaussian distribution. The world model with this stochastic feature fit nicely with participants’ subjective sense of objects’ stability and explained the illusion that taller objects are perceived as more likely to fall. Furthermore, a computational model with reinforcement learning revealed that the stochastic characteristic likely originated from experience-dependent comparisons between predictions formed by internal simulations and the realities observed in the external world, which illustrated the ecological advantage of stochastic representation in balancing accuracy and speed for efficient stability inference. The stochastic world model on gravity provides an example of how a priori knowledge of the physical world is implemented in mind that helps humans operate flexibly in open-ended environments.

    1. Neuroscience
    Geoffroy Delamare, Yosif Zaki ... Claudia Clopath
    Short Report

    Representational drift refers to the dynamic nature of neural representations in the brain despite the behavior being seemingly stable. Although drift has been observed in many different brain regions, the mechanisms underlying it are not known. Since intrinsic neural excitability is suggested to play a key role in regulating memory allocation, fluctuations of excitability could bias the reactivation of previously stored memory ensembles and therefore act as a motor for drift. Here, we propose a rate-based plastic recurrent neural network with slow fluctuations of intrinsic excitability. We first show that subsequent reactivations of a neural ensemble can lead to drift of this ensemble. The model predicts that drift is induced by co-activation of previously active neurons along with neurons with high excitability which leads to remodeling of the recurrent weights. Consistent with previous experimental works, the drifting ensemble is informative about its temporal history. Crucially, we show that the gradual nature of the drift is necessary for decoding temporal information from the activity of the ensemble. Finally, we show that the memory is preserved and can be decoded by an output neuron having plastic synapses with the main region.