A cell autonomous torsinA requirement for cholinergic neuron survival and motor control

  1. Samuel S Pappas
  2. Jay Li
  3. Tessa M LeWitt
  4. Jeong-Ki Kim
  5. Umrao R Monani
  6. William T Dauer  Is a corresponding author
  1. University of Michigan, United States
  2. Columbia University, United States

Abstract

Cholinergic dysfunction is strongly implicated in dystonia pathophysiology. Previously (Pappas et al., eLife 2015;4:e08352), we reported that Dlx5/6-Cre mediated forebrain deletion of the DYT1 dystonia protein torsinA (Dlx-CKO) causes abnormal twisting and selective degeneration of dorsal striatal cholinergic interneurons (ChI) (1). A central question raised by that work is whether the ChI loss is cell autonomous or requires torsinA loss from neurons synaptically connected to ChIs. Here, we addressed this question by using ChAT-Cre mice to conditionally delete torsinA from cholinergic neurons ('ChAT-CKO'). ChAT-CKO mice phenocopy the Dlx-CKO phenotype of selective dorsal striatal ChI loss and identify an essential requirement for torsinA in brainstem and spinal cholinergic neurons. ChAT-CKO mice are tremulous, weak, and exhibit trunk twisting and postural abnormalities. These findings are the first to demonstrate a cell autonomous requirement for torsinA in specific populations of cholinergic neurons, strengthening the connection between torsinA, cholinergic dysfunction and dystonia pathophysiology.

Data availability

All data generated during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Samuel S Pappas

    Department of Neurology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6980-2058
  2. Jay Li

    Department of Neurology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tessa M LeWitt

    Department of Neurology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeong-Ki Kim

    Department of Pathology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Umrao R Monani

    Department of Pathology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. William T Dauer

    Department of Neurology, University of Michigan, Ann Arbor, United States
    For correspondence
    dauer@med.umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1775-7504

Funding

National Institute of Neurological Disorders and Stroke (RO1NS077730)

  • William T Dauer

Tyler's Hope for a Dystonia Cure

  • William T Dauer

National Institutes of Health (RO1NS057482)

  • Umrao R Monani

National Institutes of Health (R21NS099921)

  • Umrao R Monani

National Institutes of Health (R56NS104218)

  • Umrao R Monani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Louis J Ptáček, University of California, San Francisco, United States

Ethics

Animal experimentation: All experiments were performed according to the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures involving animals were approved by the University of Michigan Institutional Animal Care and Use Committee (animal use protocol PRO00006600). All effort was taken to minimize the number of animals used and to prevent discomfort or distress.

Version history

  1. Received: March 15, 2018
  2. Accepted: August 16, 2018
  3. Accepted Manuscript published: August 17, 2018 (version 1)
  4. Version of Record published: August 29, 2018 (version 2)

Copyright

© 2018, Pappas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,738
    views
  • 278
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel S Pappas
  2. Jay Li
  3. Tessa M LeWitt
  4. Jeong-Ki Kim
  5. Umrao R Monani
  6. William T Dauer
(2018)
A cell autonomous torsinA requirement for cholinergic neuron survival and motor control
eLife 7:e36691.
https://doi.org/10.7554/eLife.36691

Share this article

https://doi.org/10.7554/eLife.36691

Further reading

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan D Barense
    Research Article Updated

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations – the crossmodal binding problem – remains poorly understood. Here, we applied multi-echo fMRI across a 4-day paradigm, in which participants learned three-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures – temporal pole and perirhinal cortex – differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased toward visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here we addressed how murine adult hippocampal NSC fate is regulated and describe how Scaffold Attachment Factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor Nuclear Factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.