Ion Channels: Exploiting natural regulation

Using a short peptide to regulate the activity of HCN ion channels illustrates how physiological modulators could inspire new drugs. .
  1. Catherine Proenza  Is a corresponding author
  1. University of Colorado Anschutz Medical Campus, United States

From the brain to the heart to the bladder, electrical potentials across cell membranes ensure that nerves and muscles work properly. These potentials emerge as ions go into and out of cells, crossing the membrane through proteins known as ion channels. The structures open and close their ion-conducting pores in response to voltage changes, the binding of ligands, or both.

Mutations in ion channels can lead to conditions like epilepsy or abnormal cardiac rhythms, which are caused by faulty electric signals in the brain or the heart. Drugs that target these proteins can help to treat the diseases, but they often act by blocking the pore. This means that they can inhibit but not increase the activity of the channel. Moreover, given the similarities between the pores of different types of ion channels, it is challenging to create blockers that are specific to just one type.

Nature regulates ion channels too, of course. For example, our heart beats faster during a fight-or-flight response because the body subtly alters the properties of ion channels in the pacemaker cells that set the heart rate. However, nature does not typically block pores: rather, it relies on molecules that act indirectly, via other domains of the channels. This ‘allosteric modulation’ can either activate or inhibit ion channels; it can also be more specific than pore blockade because these other domains vary considerably between different types of channels. Designing new categories of drugs with sites of action that mimic the ones found in natural allosteric regulators could help to target ion channels more accurately, and control their activity more finely.

Now, in eLife, Anna Moroni of the University of Milan, Bina Santoro at Columbia University, and colleagues at institutes in Italy, Germany and France – including Andrea Saponaro as first author – report what may constitute a first step towards developing such drugs (Saponaro et al., 2018).

Their work focuses on HCN (short for hyperpolarization-activated cyclic nucleotide-sensitive) channels, which are present both in neurons and in cardiac pacemaker cells. These channels open when the membrane potential becomes more negative, but nature also uses cyclic nucleotides such as cAMP to fine-tune the precise voltage range at which they activate. Cyclic nucleotides attach directly to a conserved sequence, the cyclic nucleotide-binding domain, which is located in an intracellular region of HCN channels; in turn, this interaction shifts the range of voltage activation to more positive potentials, making the channels easier to open with voltage.

Nearly fifteen years ago, it was found that HCN channels in neurons associate with an additional subunit called TRIP8b (Santoro et al., 2004). This protein binds to the channels at two distinct sites, which in turn modulates their activity in two different ways (Santoro et al., 2011; Han et al., 2011; Bankston et al., 2012). In one type of regulation, an end of TRIP8b associates with one of the extremities of the channels to control how many channels are expressed on the membrane. In the other type, the central core region of TRIP8b attaches to the cyclic nucleotide-binding domain to decrease the sensitivity of the channel to cAMP.

Building on previous research, Saponaro et al. characterize the interactions between TRIP8b and HCN channels that are required to lessen their response to cAMP. Using a combination of techniques (NMR, structural modeling, and calorimetry) they reveal that a short peptide containing 40 amino acids, TRIP8bnano, attaches to the cyclic nucleotide-binding domain and is enough to reduce the affinity of the channel for cAMP.

The interactions between TRIP8bnano and the cyclic nucleotide-binding domain were found to be mainly electrostatic, as previously suggested (DeBerg et al., 2015). Many, but not all, of the residues that associate with TRIP8bnano also interact with cAMP. This observation supports previous claims that the channels reduce their affinity for cAMP in two ways. First, TRIP8b and the nucleotide directly compete with each other (Han et al., 2011; DeBerg et al., 2015; Bankston et al., 2017); second, when TRIP8b binds, it indirectly causes rearrangements in the cyclic nucleotide-binding domain that make it more difficult for cAMP to attach (Hu et al., 2013; Saponaro et al., 2014; DeBerg et al., 2015).

An important set of experiments also showed that the TRIP8bnano peptide can prevent cAMP from regulating HCN channels which are both native (in cardiac pacemaker cells) and artificially expressed (in propagated cell lines). In fact, even though TRIP8b is not expressed in the heart, the peptide can still slow the rate at which pacemaker cells fire; in principle, this could be used to design better drugs to decrease heart rate. As the interaction between HCN channels and TRIP8b has also been associated with depression (Lyman et al., 2017) and active coping behavior (Fisher et al., 2018), these results may be of interest in the treatment of mental health disorders as well.

The work by Saponaro et al. is a proof of concept that small regions of natural allosteric regulators can be exploited to modify the activity of ion channels in cells. Ultimately, it underscores how pinpointing regulatory hotspots on these channels could power the creation of new allosteric drugs.

References

Article and author information

Author details

  1. Catherine Proenza

    Catherine Proenza is in the Department of Physiology and Biophysics and the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, United States

    For correspondence
    Catherine.Proenza@ucdenver.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4324-6206

Publication history

  1. Version of Record published: August 6, 2018 (version 1)

Copyright

© 2018, Proenza

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 949
    views
  • 77
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Catherine Proenza
(2018)
Ion Channels: Exploiting natural regulation
eLife 7:e39664.
https://doi.org/10.7554/eLife.39664

Further reading

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.