Abstract

Mechanically activated (MA) ion channels convert physical forces into electrical signals, and are essential for eukaryotic physiology. Despite their importance, few bona-fide MA channels have been described in plants and animals. Here, we show that various members of the OSCA and TMEM63 family of proteins from plants, flies, and mammals confer mechanosensitivity to naïve cells. We conclusively demonstrate that OSCA1.2, one of the Arabidopsis thaliana OSCA proteins, is an inherently mechanosensitive, pore-forming ion channel. Our results suggest that OSCA/TMEM63 proteins are the largest family of MA ion channels identified, and are conserved across eukaryotes. Our findings will enable studies to gain deep insight into molecular mechanisms of MA channel gating, and will facilitate a better understanding of mechanosensory processes in vivo across plants and animals.

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Swetha E Murthy

    Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9580-3380
  2. Adrienne E Dubin

    Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tess Whitwam

    Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sebastian Jojoa Cruz

    Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4392-3898
  5. Stuart M Cahalan

    Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Seyed Ali Mosavi

    Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrew B Ward

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7153-3769
  8. Ardem Patapoutian

    Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
    For correspondence
    ardem@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0726-7034

Funding

National Institute of Neurological Disorders and Stroke (R35NS105067)

  • Ardem Patapoutian

Howard Hughes Medical Institute

  • Ardem Patapoutian

National Institutes of Health (R21DE025329)

  • Adrienne E Dubin

Ray Thomas Edwards Foundation

  • Andrew B Ward

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Baron Chanda, University of Wisconsin-Madison, United States

Version history

  1. Received: September 8, 2018
  2. Accepted: October 11, 2018
  3. Accepted Manuscript published: November 1, 2018 (version 1)
  4. Version of Record published: November 14, 2018 (version 2)
  5. Version of Record updated: November 15, 2018 (version 3)

Copyright

© 2018, Murthy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,083
    views
  • 1,718
    downloads
  • 242
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Swetha E Murthy
  2. Adrienne E Dubin
  3. Tess Whitwam
  4. Sebastian Jojoa Cruz
  5. Stuart M Cahalan
  6. Seyed Ali Mosavi
  7. Andrew B Ward
  8. Ardem Patapoutian
(2018)
OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels
eLife 7:e41844.
https://doi.org/10.7554/eLife.41844

Share this article

https://doi.org/10.7554/eLife.41844

Further reading

  1. Edited by Kenton J Swartz et al.
    Collection

    eLife has published papers on topics related to the molecular structure and functional mechanisms of a diverse array of ion channel proteins.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Brian PH Metzger, Yeonwoo Park ... Joseph W Thornton
    Research Article

    A protein’s genetic architecture – the set of causal rules by which its sequence produces its functions – also determines its possible evolutionary trajectories. Prior research has proposed that the genetic architecture of proteins is very complex, with pervasive epistatic interactions that constrain evolution and make function difficult to predict from sequence. Most of this work has analyzed only the direct paths between two proteins of interest – excluding the vast majority of possible genotypes and evolutionary trajectories – and has considered only a single protein function, leaving unaddressed the genetic architecture of functional specificity and its impact on the evolution of new functions. Here, we develop a new method based on ordinal logistic regression to directly characterize the global genetic determinants of multiple protein functions from 20-state combinatorial deep mutational scanning (DMS) experiments. We use it to dissect the genetic architecture and evolution of a transcription factor’s specificity for DNA, using data from a combinatorial DMS of an ancient steroid hormone receptor’s capacity to activate transcription from two biologically relevant DNA elements. We show that the genetic architecture of DNA recognition consists of a dense set of main and pairwise effects that involve virtually every possible amino acid state in the protein-DNA interface, but higher-order epistasis plays only a tiny role. Pairwise interactions enlarge the set of functional sequences and are the primary determinants of specificity for different DNA elements. They also massively expand the number of opportunities for single-residue mutations to switch specificity from one DNA target to another. By bringing variants with different functions close together in sequence space, pairwise epistasis therefore facilitates rather than constrains the evolution of new functions.