Unimodal statistical learning produces multimodal object-like representations

  1. Gábor Lengyel  Is a corresponding author
  2. Goda Žalalytė
  3. Alexandros Pantelides
  4. James Neilson Ingram
  5. József Fiser  Is a corresponding author
  6. Máté Lengyel  Is a corresponding author
  7. Daniel M Wolpert  Is a corresponding author
  1. Central European University, Hungary
  2. University of Cambridge, United Kingdom

Abstract

The concept of objects is fundamental to cognition and is defined by a consistent set of sensory properties and physical affordances. Although it is unknown how the abstract concept of an object emerges, most accounts assume that visual or haptic boundaries are crucial in this process. Here, we tested an alternative hypothesis that boundaries are not essential but simply reflect a more fundamental principle: consistent visual or haptic statistical properties. Using a novel visuo-haptic statistical learning paradigm, we familiarised participants with objects defined solely by across-scene statistics provided either visually or through physical interactions. We then tested them on both a visual familiarity and a haptic pulling task, thus measuring both within-modality learning and across-modality generalisation. Participants showed strong within-modality learning and 'zero-shot' across-modality generalisation which were highly correlated. Our results demonstrate that humans can segment scenes into objects, without any explicit boundary cues, using purely statistical information.

Data availability

The scripts for all of the analysis reported in the manuscript can be found here https://github.com/GaborLengyel/Visual-Haptic-Statistical-Learning. There is a README file that explains both where the data can be found (Open Science Framework https://osf.io/456qb/) and how to run the analysis.

Article and author information

Author details

  1. Gábor Lengyel

    Department of Cognitive Science, Central European University, Budapest, Hungary
    For correspondence
    lengyel.gaabor@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1535-3250
  2. Goda Žalalytė

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0012-9950
  3. Alexandros Pantelides

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6234-6061
  4. James Neilson Ingram

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. József Fiser

    Department of Cognitive Science, Central European University, Budapest, Hungary
    For correspondence
    fiserj@ceu.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Máté Lengyel

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    m.lengyel@eng.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel M Wolpert

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    wolpert@eng.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2011-2790

Funding

ERC Consolidator Grant (ERC-2016-COG/726090)

  • Máté Lengyel

Royal Society Noreen Murray Professorship in Neurobiolog (RP120142)

  • Daniel M Wolpert

EU-FP7 Marie Curie CIG (CIG 618918)

  • József Fiser

Wellcome Trust: New Investigator Award (095621/Z/11/Z)

  • Máté Lengyel

National Institutes of Health (NIH R21 HD088731)

  • József Fiser

Wellcome Trust: Senior Investigator Award (097803/Z/11/Z)

  • Daniel M Wolpert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jörn Diedrichsen, University of Western Ontario, Canada

Ethics

Human subjects: All participants gave informed consent. All experimental protocols were approved by the University of Cambridge Psychology Ethics Committee.

Version history

  1. Received: November 27, 2018
  2. Accepted: April 30, 2019
  3. Accepted Manuscript published: May 1, 2019 (version 1)
  4. Version of Record published: May 21, 2019 (version 2)

Copyright

© 2019, Lengyel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,491
    views
  • 405
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gábor Lengyel
  2. Goda Žalalytė
  3. Alexandros Pantelides
  4. James Neilson Ingram
  5. József Fiser
  6. Máté Lengyel
  7. Daniel M Wolpert
(2019)
Unimodal statistical learning produces multimodal object-like representations
eLife 8:e43942.
https://doi.org/10.7554/eLife.43942

Share this article

https://doi.org/10.7554/eLife.43942

Further reading

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.