Distinct roles of striatal direct and indirect pathways in value-based decision making

  1. Shinae Kwak
  2. Min Whan Jung  Is a corresponding author
  1. Institute for Basic Science, Republic of Korea

Abstract

The striatum is critically involved in value-based decision making. However, it is unclear how striatal direct and indirect pathways work together to make optimal choices in a dynamic and uncertain environment. Here, we examined the effects of selectively inactivating D1 receptor (D1R)- or D2 receptor (D2R)-expressing dorsal striatal neurons (corresponding to direct- and indirect-pathway neurons, respectively) on mouse choice behavior in a reversal task with progressively increasing reversal frequency and a dynamic two-armed bandit task. Inactivation of either D1R- or D2R-expressing striatal neurons impaired performance in both tasks, but the pattern of altered choice behavior differed between the two animal groups. A reinforcement learning model-based analysis indicated that inactivation of D1R- and D2R-expressing striatal neurons selectively impairs value-dependent action selection and value learning, respectively. Our results suggest differential contributions of striatal direct and indirect pathways to two distinct steps in value-based decision making.

Data availability

Data is available via Dryad under doi:10.5061/dryad.4c80mn5.

The following data sets were generated

Article and author information

Author details

  1. Shinae Kwak

    Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Min Whan Jung

    Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
    For correspondence
    mwjung@kaist.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4145-600X

Funding

Research Center Program of the Institute for Basic Science (IBS-R002-G1)

  • Min Whan Jung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geoffrey Schoenbaum, National Institute on Drug Abuse, National Institutes of Health, United States

Ethics

Animal experimentation: The experimental protocol was approved by the Animal Care and Use Committee of the Korea Advanced Institute of Science and Technology (Daejeon, Korea; approval number approval number KA2018-08).

Version history

  1. Received: February 13, 2019
  2. Accepted: July 9, 2019
  3. Accepted Manuscript published: July 16, 2019 (version 1)
  4. Version of Record published: July 25, 2019 (version 2)

Copyright

© 2019, Kwak & Jung

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,918
    views
  • 589
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shinae Kwak
  2. Min Whan Jung
(2019)
Distinct roles of striatal direct and indirect pathways in value-based decision making
eLife 8:e46050.
https://doi.org/10.7554/eLife.46050

Share this article

https://doi.org/10.7554/eLife.46050

Further reading

    1. Neuroscience
    Geoffroy Delamare, Yosif Zaki ... Claudia Clopath
    Short Report

    Representational drift refers to the dynamic nature of neural representations in the brain despite the behavior being seemingly stable. Although drift has been observed in many different brain regions, the mechanisms underlying it are not known. Since intrinsic neural excitability is suggested to play a key role in regulating memory allocation, fluctuations of excitability could bias the reactivation of previously stored memory ensembles and therefore act as a motor for drift. Here, we propose a rate-based plastic recurrent neural network with slow fluctuations of intrinsic excitability. We first show that subsequent reactivations of a neural ensemble can lead to drift of this ensemble. The model predicts that drift is induced by co-activation of previously active neurons along with neurons with high excitability which leads to remodeling of the recurrent weights. Consistent with previous experimental works, the drifting ensemble is informative about its temporal history. Crucially, we show that the gradual nature of the drift is necessary for decoding temporal information from the activity of the ensemble. Finally, we show that the memory is preserved and can be decoded by an output neuron having plastic synapses with the main region.

    1. Cell Biology
    2. Neuroscience
    Alexandra Stavsky, Leonardo A Parra-Rivas ... Daniel Gitler
    Short Report

    The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.