Protein engineering expands the effector recognition profile of a rice NLR immune receptor

  1. Juan Carlos De la Concepcion
  2. Marina Franceschetti
  3. Dan MacLean
  4. Ryohei Terauchi
  5. Sophien Kamoun
  6. Mark J Banfield  Is a corresponding author
  1. John Innes Centre, United Kingdom
  2. The Sainsbury Laboratory, United Kingdom
  3. Iwate Biotechnology Research Center, Japan

Abstract

Plant NLR receptors detect pathogen effectors and initiate an immune response. Since their discovery, NLRs have been the focus of protein engineering to improve disease resistance. However, this has proven challenging, in part due to their narrow response specificity. Previously, we revealed the structural basis of pathogen recognition by the integrated HMA of the rice NLR Pikp (Maqbool, Saitoh et al. 2015). Here, we used structure-guided engineering to expand the response profile of Pikp to variants of the rice blast pathogen effector AVR-Pik. A mutation located within an effector binding interface of the integrated Pikp-HMA domain increased the binding affinity for AVR-Pik variants in vitro and in vivo. This translates to an expanded cell death response to AVR-Pik variants previously unrecognized by Pikp in planta. Structures of the engineered Pikp-HMA in complex with AVR-Pik variants revealed the mechanism of expanded recognition. These results provide a proof-of-concept that protein engineering can improve the utility of plant NLR receptors where direct interaction between effectors and NLRs is established, particularly via integrated domains.

Data availability

Protein structures, and the data used to derive these, have been deposited at the Protein DataBank (PDB) with accession codes 6R8K (Pikp-HMANK-KE/AVR-PikD) and 6R8M (Pikp-HMANK-KE/AVR-PikE).

The following data sets were generated

Article and author information

Author details

  1. Juan Carlos De la Concepcion

    Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Marina Franceschetti

    Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Dan MacLean

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Ryohei Terauchi

    Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Sophien Kamoun

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0290-0315
  6. Mark J Banfield

    Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
    For correspondence
    Mark.banfield@jic.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8921-3835

Funding

Biotechnology and Biological Sciences Research Council (BB/J004553)

  • Sophien Kamoun
  • Mark J Banfield

Biotechnology and Biological Sciences Research Council (BB/P012574)

  • Sophien Kamoun
  • Mark J Banfield

Biotechnology and Biological Sciences Research Council (BB/M02198X)

  • Marina Franceschetti
  • Sophien Kamoun
  • Mark J Banfield

H2020 European Research Council (743165)

  • Sophien Kamoun
  • Mark J Banfield

John Innes Foundation

  • Juan Carlos De la Concepcion
  • Marina Franceschetti
  • Mark J Banfield

Gatsby Charitable Foundation

  • Sophien Kamoun

Japan Society for the Promotion of Science (15H05779)

  • Ryohei Terauchi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thorsten Nürnberger, University of Tübingen, Germany

Version history

  1. Received: April 17, 2019
  2. Accepted: September 17, 2019
  3. Accepted Manuscript published: September 19, 2019 (version 1)
  4. Version of Record published: September 30, 2019 (version 2)

Copyright

© 2019, De la Concepcion et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,822
    views
  • 830
    downloads
  • 109
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Carlos De la Concepcion
  2. Marina Franceschetti
  3. Dan MacLean
  4. Ryohei Terauchi
  5. Sophien Kamoun
  6. Mark J Banfield
(2019)
Protein engineering expands the effector recognition profile of a rice NLR immune receptor
eLife 8:e47713.
https://doi.org/10.7554/eLife.47713

Share this article

https://doi.org/10.7554/eLife.47713

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Dietmar Funck, Malte Sinn ... Jörg S Hartig
    Research Article

    Metabolism and biological functions of the nitrogen-rich compound guanidine have long been neglected. The discovery of four classes of guanidine-sensing riboswitches and two pathways for guanidine degradation in bacteria hint at widespread sources of unconjugated guanidine in nature. So far, only three enzymes from a narrow range of bacteria and fungi have been shown to produce guanidine, with the ethylene-forming enzyme (EFE) as the most prominent example. Here, we show that a related class of Fe2+- and 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) highly conserved among plants and algae catalyze the hydroxylation of homoarginine at the C6-position. Spontaneous decay of 6-hydroxyhomoarginine yields guanidine and 2-aminoadipate-6-semialdehyde. The latter can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde dehydrogenase ALDH7B in vivo. Arabidopsis has three 2-ODD-C23 isoforms, among which Din11 is unusual because it also accepted arginine as substrate, which was not the case for the other 2-ODD-C23 isoforms from Arabidopsis or other plants. In contrast to EFE, none of the three Arabidopsis enzymes produced ethylene. Guanidine contents were typically between 10 and 20 nmol*(g fresh weight)-1 in Arabidopsis but increased to 100 or 300 nmol*(g fresh weight)-1 after homoarginine feeding or treatment with Din11-inducing methyljasmonate, respectively. In 2-ODD-C23 triple mutants, the guanidine content was strongly reduced, whereas it increased in overexpression plants. We discuss the implications of the finding of widespread guanidine-producing enzymes in photosynthetic eukaryotes as a so far underestimated branch of the bio-geochemical nitrogen cycle and propose possible functions of natural guanidine production.

    1. Plant Biology
    Ivan Kulich, Julia Schmid ... Jiří Friml
    Research Article

    Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.